Configuration mixing of positive parity excited baryons in the large N_c limit

Cintia T. Willemyns

University of Mons, Belgium

Conference on Hadron Spectroscopy and Structure 2019 17 August 2019

¹C.T. Willemyns, N.N. Scoccola, Phys. Rev. D 98, 034019 (2018)

²C.T. Willemyns, C. Schat, Phys. Rev. D 95, 094007 (2017)

Outline

- Motivation
- 2 Baryons in the large N_c limit
- 3 Towers with configuration mixing
- $oldsymbol{4}$ Summary

Understanding baryon structure directly from QCD is a basic problem of hadronic physics

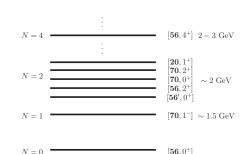
- Chiral Perturbation Theory, Nambu-Jona-Lasinio model, etc...
 - Lattice QCD
 - Large N_c QCD

G. 't Hooft proposed a QCD generalized to N_c colors

Large N_c QCD admits a consistent perturbative expansion in terms of $1/N_c$

³K. G. Wilson, Phys. Rev. D 10, 2445 (1974)

⁴G. 't Hooft, Nucl. Phys. B 72, 461 (1974)


Baryon classification scheme

Baryon classification scheme → Quark Model (QM)

In the QM

Baryons belong to the $SU(6) \times O(3)$ irreducible representations.

They organize in bands of the harmonic oscillator.

Experimental data and Lattice QCD calculations seem to "agree" with QM classification scheme

Spin-flavor symmetry for baryons in large N_c QCD

Gervais, Sakita and Dashen, Manohar found that in the large N_c limit a spin-flavor "contracted" $SU(2N_f)_c$ arises for **ground state** baryons.

$$\begin{array}{c|c} SU(2N_f) & SU(2N_f)_c \\ \hline [S^i,T^a] = 0, & [S^i,S^j] = i\epsilon^{ijk}S^k, & [T^a,T^b] = if^{abc}T^c, \\ [S^i,G^{ja}] = i\epsilon^{ijk}G^{ka}, & [T^a,G^{ib}] = if^{abc}G^{ic}, \\ [G^{ia},G^{jb}] = \frac{i}{4}\delta^{ij}f^{abc}T^c + \frac{i}{2}N_f\delta^{ab}\epsilon^{ijk}S^k + \frac{i}{2}\epsilon^{ijk}d^{abc}G^{kc} \\ \hline [X^i,X^j_0] = 0 \\ \hline \end{array}$$

$$X_0^{ia} = \lim_{N_c \to \infty} \frac{G^{ia}}{N_c}.$$

$$SU(2N_f)$$
 (QM) $\xrightarrow{N_c \to \infty} SU(2N_f)_c$

⁵ J. L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984), Phys. Rev. D 30, 1795 (1984).

⁶R. F. Dashen and A. V. Manohar, Phys. Lett. B 315, 425 (1993)

Baryons in the large N_c limit

Ground state baryons are symmetric states in spin-flavor

GS baryon :
$$N_c$$
 quarks
Symmetric in spin-flavor

We couple a quark and a core to get the symmetries of the excited states

Excited baryon :
$$\underbrace{\textit{N}_{\textit{c}} - 1 \text{ quarks core}}_{\text{Symmetric in spin-flavor}} + \underbrace{\text{excited quark}}_{\ell}$$

Large N_c baryons

"QM states" with N_c colors

For $N_c = 3$:

56 → Symmetric

 $\textbf{70} \, \rightarrow \, \text{Mixed-symmetric}$

 $\textbf{20} \rightarrow \mathsf{Antisymmetric}$

$$8 = (1, 1)$$

1 1

1 2

1 1

For large N_c :

"56" \rightarrow Symmetric

"70" \rightarrow Mixed-symmetric

"20" \rightarrow Antisymmetric

"8" =
$$(1, \frac{N_c-1}{2})$$

1 1

1 2 1

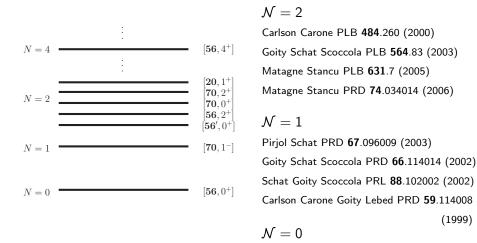
1 2 2 1

1 2 2 2 1

Operator expansion for excited states

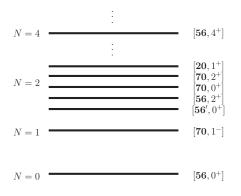
$$O = \sum_{i=1} c_i O_i + \mathcal{O}(1/N_c)$$

The buildings blocks of the operator expansions are the group generators:


- ullet SU(6) generators: S, T, G o s, t, g, S_c , T_c , G_c
- coupled to an angular momentum operator ℓ .

Using reduction rules one can find an operator basis for excited states.

$$H = \sum_{i=1}^{5} c_i^{\mathsf{T},\mathsf{T}'} O_i + \mathcal{O}(1/N_c)$$


8 / 15

States studied in the $1/N_c$ expansion

Witten NPB **160**.57 (1979)

States studied in the $1/N_c$ expansion

- Since the QM symmetries are not QCD symmetries, these states can mix
- In large N_c QCD too

Configuration mixing effects are not N_c suppressed

A complete study of the band
 N = 2 was necessary

⁷J. Goity, Yad. Fiz. 68.655 (2005).

Towers of large N_c states

Large N_c QCD \rightarrow towers K

For $N_f = 2$, K is determined by the spin-flavor symmetry

$$\mathbf{K} = \mathbf{L}$$
 for S $\mathbf{K} = \mathbf{L} + \mathbf{1}$ for MS, A

For
$$["70", 2^+] \to \text{three towers } K = 1, 2, 3$$

For $N_f = 3$ this relation is not trivial

Only states with same K number mix

⁸D. Pirjol, T. M. Yan, PRD 57.1449 (1998)

⁹D. Pirjol, T. M. Yan, PRD 57.5434 (1998)

Main results:

S and MS states fall into only nine towers

$$\begin{array}{lll} m_0 & = & \bar{c}_1^{S_0} \, N_c, \\ m_{1^\pm} & = & \bar{m}_1 \pm \delta_1, & \text{with } \delta \sim \mathcal{O}(1) \\ m_{2^\pm} & = & \bar{m}_2 \pm \delta_2, \\ m_3 & = & \bar{c}_1^{MS_2} \, N_c + c_2^{MS_2} - \frac{2}{7} c_3^{MS_2} \\ m_{\frac{1}{2}} & = & \bar{c}_1^{MS_0} \, N_c - 3 c_5^{MS_0} \\ m_{\frac{3}{2}} & = & \bar{c}_1^{MS_2} \, N_c - \frac{3}{2} \bar{c}_2^{MS_2} + 3 c_4^{MS_2} - 3 c_5^{MS_2} \\ m_{\frac{5}{2}} & = & \bar{c}_1^{MS_2} \, N_c + \bar{c}_2^{MS_2} - 2 c_4^{MS_2} - 3 c_5^{MS_2} \end{array}$$

Antisymmetric states of the $\mathcal{N}=2$ band fall into 6 towers

• Configuration mixing effects are $\mathcal{O}(1)$

Configuration mixing effects

• Configuration mixing happens between ["**70**", 0⁺] – ["**70**", 2⁺] and ["**56**", 2⁺] – ["**70**", 2⁺].

$$\delta_{1} = \sqrt{\left(\frac{1}{2}\left(\bar{c}_{1}^{\textit{MS}_{0}} - \bar{c}_{1}^{\textit{MS}_{2}}\right)N_{c} + \frac{3}{4}\bar{c}_{2}^{\textit{MS}_{2}} + \frac{1}{2}c_{3}^{\textit{MS}_{2}}\right)^{2} + 2\left(c_{3}^{\textit{MS}_{0}}, MS_{2}\right)^{2}}$$

• Configuration mixing of the ["20", 1+] is an $\mathcal{O}(1/N_c)$ effect.

Summary

The $1/N_c$ expansion of QCD for baryons gives an analytical insight into the low energy regime

- Study baryons in the large N_c is complicated (many states to consider, group theory)
- We know how to build baryons states and operators with N_c colors. The core+quark approach in large N_c is suitable to study S, MS, and also A states.
- We considered configuration mixing and found that all the states of the N=2 band organize into 9+6 towers.
- Configuration mixing happens between $["70", 0^+] ["70", 2^+]$ and $["56", 2^+] ["70", 2^+]$, other mixings are subleading.

Thank you for your attention

References

- [1] C.T. Willemyns, N.N. Scoccola, Phys. Rev. D 98, 034019 (2018)
- [2] C.T. Willemyns, C. Schat, Phys. Rev. D 95, 094007 (2017)
- [3] K. G. Wilson, Phys. Rev. D 10, 2445 (1974)
- [4] G. 't Hooft, Nucl. Phys. B 72, 461 (1974)
- [5] J. L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984), Phys. Rev. D 30, 1795 (1984)
- [6] R. F. Dashen and A. V. Manohar, Phys. Lett. B 315, 425 (1993)
- [7] J. Goity, Yad. Fiz. 68.655 (2005)
- [8] D. Pirjol, T. M. Yan, PRD 57.1449 (1998)
- [9] D. Pirjol, T. M. Yan, PRD 57.5434 (1998)