Precise tests of the hadron-hadron strong interaction via femtoscopy with ALICE

Otón Vázquez Doce (TUM)
for the ALICE Collaboration

XVIII International Conference on Hadron Spectroscopy and Structure (HADRON2019)
18 August 2019
Guilin, China
Outline

LHC: High-energy physics

“Non-traditional” Femtoscopy

Hadron physics

HADRON-HADRON STRONG INTERACTION VIA FEMTOSCOPY WITH ALICE

Otón Vázquez Doce (TUM)
Outline

ALICE experiment at the LHC

Used datasets:
- \textbf{pp} 13 TeV: $15 \cdot 10^8$ MB events
- \textbf{pp} 13 TeV: $15 \cdot 10^8$ High-Mult events
- \textbf{p-Pb} 5.02 TeV: $6.0 \cdot 10^8$ MB events

Tracking and PID:
- Inner Tracking System (\textbf{ITS})
- Time Projection Chamber (\textbf{TPC})
- Time Of Flight (\textbf{TOF})
Outline

ALICE experiment at the LHC

- **pp** 13 TeV: $15 \cdot 10^8$ MB events
- **pp** 13 TeV: $15 \cdot 10^8$ High-Mult events
- **p-Pb** 5.02 TeV: $6.0 \cdot 10^8$ MB events

Tracking and PID:
- Inner Tracking System (**ITS**)
- Time Projection Chamber (**TPC**)
- Time Of Flight (**TOF**)

“Non-traditional Femtoscopy”

Study of correlations of hadron-hadron pairs from small sources:
- **p-p**, **p-K^+/−**, **p-Λ**, **p-Σ^0**, **p-Ξ^−**, **p-Ω^−**

Reconstruction of hyperons:
- **Λ → pπ** (BR ~ 64%)
- **Σ^0 → Λγ** (BR ~ 100%)
- **Ξ → Λπ** (BR ~ 100%)
- **Ω → ΛK** (BR ~ 68%)
Outline

ALICE experiment at the LHC

Used datasets:
- **pp** 13 TeV: $15 \cdot 10^8$ MB events
- **pp** 13 TeV: $15 \cdot 10^8$ High-Mult events
- **p-Pb** 5.02 TeV: $6.0 \cdot 10^8$ MB events

Tracking and PID:
- Inner Tracking System (ITS)
- Time Projection Chamber (TPC)
- Time Of Flight (TOF)

“Non-traditional Femtoscopy”

Study of correlations of hadron-hadron pairs from small sources:
- **p-p**, **p-K^{+/-}, p-Λ, p-Σ^0, p-Ξ^-, p-Ω**

Reconstruction of hyperons
- $Λ \rightarrow p\pi$ (BR $\sim 64\%$)
- $Σ^0 \rightarrow Λ\gamma$ (BR $\sim 100\%$)
- $Ξ \rightarrow Λ\pi$ (BR $\sim 100\%$)
- $Ω \rightarrow ΛK$ (BR $\sim 68\%$)

Hadron physics

- Study the **interaction of hadrons with strange content**. While N-N interaction are well known and constrained by precise scattering data, **constructing YN, YY potentials is very challenging**.

- Recent developments
 - Lattice-QCD
 - Chiral effective field theory
 - Meson exchange models

- Models are constrained by data with limited precision due to the experimental difficult with strange particle beams: Scattering data, hypernuclei, search for bound states, exotic atoms, etc.

- **Femtoscopy** with ALICE delivers **precise data** in the low momentum range, in a region **not accessible with other approaches**, with consequences on the **possible appearance of hyperons in neutron stars** and the **existence of strange di-baryons**.
Femtoscopy as a tool for studying h-h interactions

Based on the correlation function $C(k^*) = \frac{P(p_a, p_b)}{P(p_a)P(p_b)}$

$k^* = \text{reduced relative momentum with } \vec{p}_a + \vec{p}_b = 0$

Theoretically formulated:

$C(k^*) = \int S(\vec{r}, k)|\psi(\vec{r}, k)|^2 d\vec{r} \quad k^* \rightarrow \infty \quad 1$

$>1 \Rightarrow \text{Attractive interaction}$

$<1 \Rightarrow \text{Repulsive interaction}$
Femtoscopy as a tool for studying h-h interactions

Based on the correlation function

\[C(k^*) = \frac{P(p_a, p_b)}{P(p_a)P(p_b)} \]

\(k^* \) = reduced relative momentum with \(\vec{p}_a^* + \vec{p}_b^* = 0 \)

Theoretically formulated:

\[C(k^*) = \int S(\vec{r}, k) |\psi(\vec{r}, k)|^2 d\vec{r} \]

Source function \(S(\vec{r}) \)

Relative wave function:
Sensitivity to the interaction potential

Study the \(C(k^*) \) of hadron-hadron pairs in pp collisions ⇒ small particle source (~1 fm)
Femtoscopy as a tool for studying h-h interactions

Based on the correlation function $C(k^*) = \frac{P(p_a, p_b)}{P(p_a)P(p_b)}$ where $k^* = \text{reduced relative momentum with } p_a^* + p_b^* = 0$

Theoretically formulated:

$$C(k^*) = \int S(\vec{r}, k)|\psi(\vec{r}, k)|^2 d\vec{r}$$

Experimentally: $C(k^*) = \mathcal{N} \frac{N_{\text{Same}}(k^*)}{N_{\text{Mixed}}(k^*)}$

Generally, the experimental correlation function accounts for the genuine correlation and it is affected by residual correlations and finite momentum resolution.
CATS: Correlation Analysis Tool Using the Schrödinger Equation

Provides an exact solution computing the correlation function from the model given a local potential or wave function form.
CATS: Correlation Analysis Tool Using the Schrödinger Equation

Provides a exact solution computing the correlation function from the model given a local potential or wave function form.

Decomposition of the correlation function

- Purities and contributions from weak decays determined from fits to experimental data
- Such residual correlations modelled (weak decays) or obtained from data (impurities)
- Resolution effects applied to the fit function

Setting the source

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

The characteristics of the source are determined from femtoscopic analysis of the p-p correlation:
Assume a p-p known interaction → determination of the source size

- **Consider \(m_T \) dependence of the source due to collective effects:**
 - Femtoscopic p-p fits performed differentially in \(m_T \) bins
 - \(m_T \) dependence cross-checked with p-\(\Lambda \) analysis

- **Effect of strong short-lived resonances** computed for all hadrons
 - Statistical hadronization model in the canonical approach

Setting the source

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation:**

Assume a p-p known interaction → determination of the source size

- **Consider** \(<m_\perp>\) **dependence of the source due to collective effects:**
 - Femtoscopic p-p fits performed differentially in \(<m_\perp>\) bins
 - \(<m_\perp>\) dependence cross-checked with p-Λ analysis

- **Effect of strong short-lived resonances** computed for all hadrons
Setting the source

Parametrization with exponential law $r_{\text{core}} = a \cdot <m_T>^b + c$

Fit parameters:
- $a \in [0.65, 0.83]$
- $b \in [-1.2, -2.2]$
- $c \in [0.36, 0.66]$

The $p-\Lambda$, $p-\Sigma^0$, $p-\Xi^-$, $p-\Omega^-$ sources are determined given the pair $<m_T>$:
- $p-\Lambda$: $r_{\text{core}} = 0.88 \pm 0.03$ fm
- $p-\Xi^-$: $r_{\text{core}} = 0.80 \pm 0.03$ fm
- $p-\Sigma^0$: $r_{\text{core}} = 0.75 \pm 0.04$ fm
- $p-\Omega^-$: $r_{\text{core}} = 0.73 \pm 0.05$ fm
K-p femtoscopy: The KN interaction

- K^+p interaction is well established
- Kp features a strong attraction
 - appearance of the $\Lambda(1405)$ below threshold
 - $\Lambda(1405)$: anti$K\Sigma\pi$ molecular state
K-p femtoscopy: The KN interaction

- K⁺p interaction is well established
- Kp features a strong attraction
 - appearance of the Λ(1405) below threshold
 - Λ(1405): antiKN-Σπ molecular state
- Kp scattering data and kaonic hydrogen data used to constrain the amplitude below threshold

Experiments:

\[\Lambda(1405) \rightarrow \Sigma\pi \]

Kaonic atoms

\[\Sigma_T \quad \Lambda(1405) \quad KN \]

scattering data

27 MeV

Energy
K-p femtoscopy: The KN interaction

- K^+p interaction is well established
- Kp features a strong attraction
 - appearance of the $\Lambda(1405)$ below threshold
 - $\Lambda(1405)$: antiKN-$\Sigma\pi$ molecular state
- Kp scattering data and kaonic hydrogen data used to constrain the amplitude below threshold
K-p femtoscopy in pp collisions

- Radius obtained from inclusive p-p correlation
 \[r_0 = 1.18 \pm 0.01 \pm 0.12 \text{ fm} \]
- K\(^+\)p correlation used as a benchmark to study K\(^-\)p
K-p femtoscopy in pp collisions

- Radius obtained from inclusive p-p correlation
 \[r_0 = 1.18 \pm 0.01 \pm 0.12 \, \text{fm} \]
- K’p correlation used as a benchmark to study K’p

\[\Rightarrow \text{Bump close to the K}^0\text{n threshold} \rightarrow (58 \, \text{MeV/c in CM frame}) \]
K-p femtoscopy in pp collisions

- Radius obtained from inclusive p-p correlation
 \[r_0 = 1.18 \pm 0.01 \pm 0.12 \text{ fm} \]
- K’p correlation used as a benchmark to study K’p

⇒ Bump close to the K^0 n threshold → (58 MeV/c in CM frame)

First experimental evidence of the opening of the K^0 n isospin breaking channel

Coupled channel effect

\[M(K^- p) + 5 \text{ MeV} = M(n\bar{K}^0) \]

→ Analysis in p-Pb 5.02 TeV as a function of charged multiplicity:
Interaction changes as a function of the particle distance
p-Λ femtoscopy in High-mult pp collisions

Previous experimental constraints:
- Scarce scattering data
- No experimental evidence of the cusp due to ΣN/ΛN coupling, responsible for the appearance of a repulsive short range component in the Λp interaction
p-Λ femtoscopy in High-mult pp collisions

Previous experimental constraints:
- Scarce scattering data
- No experimental evidence of the cusp due to ΣN/ΛN coupling, responsible for the appearance of a repulsive short range component in the Λp interaction

• Extension of the kinematic range and **improved precision.**
• **Clear experimental evidence** of the cusp
• LO and NLO calculations within xEFT fail to reproduce the data
p-Σ⁰ femtoscopy in High-mult pp collisions

Identification via Σ⁰ → Λγ (BR ~ 100%)

Models for the p-Σ⁰ interaction:

The p-Σ⁰ wave function is used as input to CATS
Models of the p-Ξ- potential:

HAL-QCD (Lattice)

ESC16L Meson exchange model

Models of the p-Ξ^- potential:

\[V(r) \quad (\text{MeV}) \]

- $l = 0, s = 0$
- $l = 0, s = 1$
- $l = 1, s = 0$
- $l = 1, s = 1$

HAL-QCD

HAL-QCD (Lattice)

ESC16L Meson exchange model

p-Ξ^- in p-Pb at 5.02 TeV

\[C(k^*) \text{ vs. } k^* \quad (\text{MeV/c}) \]

- **ALICE p-Pb** $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- p-Ξ^- + \bar{p}-Ξ^-
- Coulomb + HAL-QCD
- Coulomb
- $p-$-Ξ^- sideband background

"First observation of an attractive interaction between a proton and a multi-strange baryon" ALICE Coll. ArXiv:1904.12198 [nucl-ex]
- Coulomb excluded (>4σ)
- Compatible with Lattice (HAL-QCD) calculations

\[r_0 = 1.427 \pm 0.007 \text{ (stat.)}^{+0.001}_{-0.014} \text{ (syst.) fm \ (-20\%, resonances)} \]
Models of the p-Ξ- potential:

- **HAL-QCD (Lattice)**

- **ESC16L Meson exchange model**

p-Ξ- in p-p High. Mult.

- **Coulomb** only: $> 5.7 \sigma$
- **HAL-QCD Potential**: $(1.3-2.5) \sigma$
- **ESC16 Potential**: $> 18 \sigma$

→ Hypernuclei data described by both HAL-QCD and ESC16

$r_{\text{source}} = 0.80 \text{ fm} (+\text{resonances})$
p-Ξ⁻: Implications for NS with hyperon content

In medium: Many body interaction, average Ξ⁻ Single particle potential \(U_{\Xi^-} \)

Lattice QCD:
\(U_{\Xi} \) moves from slightly repulsive in symmetric nuclear matter to **slightly repulsive** \(U_{\Xi^-} \sim 6 \) MeV in pure neutron matter (NS)
p-Ξ⁻: Implications for NS with hyperon content

In medium: Many body interaction, average Ξ Single particle potential (U_Ξ)

Lattice QCD:
U_Ξ moves from slightly repulsive in symmetric nuclear matter to **slightly repulsive** $U_\Xi \sim 6$ MeV in **pure neutron matter** (NS)

Experimental constraint:
Observation of ~2 solar masses NS

RMF models: Equation Of State of neutron-rich matter with hyperon content. Use single particle potential at saturation densities as input

Repulsive interaction:
⇒ Ξ pushed to high densities ⇒ **stiffer EoS**, higher masses
Models of the p-Ω⁻ interaction

- **Lattice HAL-QCD** potential with **physical quark masses** \(m_\pi = 146 \text{ MeV}/c^2, m_K = 525 \text{ MeV}/c^2 \)
- **Sekihara**: **Meson-exchange model**
 - Short range attractive interaction fitted to previous HAL-QCD scattering parameters

Predicted strong attraction at all distances implies the **formation of a pΩ⁻ dibaryon**

<table>
<thead>
<tr>
<th>Model</th>
<th>pΩ⁻ binding energy (strong interaction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAL-QCD</td>
<td>1.54 MeV</td>
</tr>
<tr>
<td>Sekihara</td>
<td>0.1 MeV</td>
</tr>
<tr>
<td></td>
<td>+1 MeV with Coulomb</td>
</tr>
</tbody>
</table>

\(\rightarrow \) Models provide so far only \(^5S_2\) channel (weight \(\frac{5}{6} \))

For \(^3S_1\) channel, two extreme assumptions: total absorption or attraction as \(^5S_2\)
Results: $p-\Omega^-$ correlation function in pp HM

“Coulomb only” scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction

Precision of ALICE data exceeds the theoretical predictions

$r_{\text{source}} = 0.73$ fm (+resonances)
Results: $p-\Omega^-$ correlation function in pp HM

“Coulomb only” scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction

Precision of ALICE data exceeds the theoretical predictions

Comparison with the model favoured by STAR data

V_{III}: Ad-hoc fit to previous HAL-QCD calculations with non-physical quark masses with $p\Omega$ dibaryon $E_b = 27$ MeV
Outlook

ALICE delivers the **precise data** to test the hadron-hadron interaction with strangeness content. - The LHC provides a unique and precise testing of the strong interaction at distances lower than 1 fm and we extract relevant information on two-body interactions within dense matter.

The comparison of the ALICE data in small systems with the expectation from the models is **very sensitive to the shape of the model potential**. - Femtoscopic data substitutes/complement the scattering data, hypernuclei and other approaches.

RUN3/4 will provide the possibility of carrying out new studies and investigate 3-body interactions.
Outlook

ALICE delivers the **precise data** to test the hadron-hadron interaction with strangeness content.
- The LHC provides a unique and precise testing of the strong interaction at distances lower than 1 fm and we extract relevant information on two-body interactions within dense matter.

The comparison of the ALICE data in small systems with the expectation from the models is **very sensitive to the shape of the model potential**.
- Femtoscopic data substitutes/complement the scattering data, hypernuclei and other approaches.

RUN3/4 will provide the possibility of carrying out new studies and investigate 3-body interactions.

THANK YOU!
Effect of resonances in the source

Resonances with $c\tau >> r_0$
- Decrease of the correlation strength
- Taken into account by the λ parameters

Resonances with $c\tau \sim r_0 \sim 1$ fm:
- Introduce an exponential tale
- example: N*(Γ~150-200 MeV), Δ (Γ~150 MeV), etc
- Specific exponential modulation to each pair due to different strong decaying resonances feeding to the different particle species
Details on resonances

Amount of resonances: Canonical approach of the statistical hadronization model (SHM)
- $T = 166 \text{ MeV} \& \gamma_s \approx 0.8$ (Private Comm Prof. F. Becattini, J. Phys. G38 (2011) 025002)

- For Ξ and no Ω contributions!
- Average mass and average c_t determined by the weighted average values of all resonances

<table>
<thead>
<tr>
<th>Particle</th>
<th>M_{res} [MeV]</th>
<th>τ_{res} [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1361.52</td>
<td>1.65</td>
</tr>
<tr>
<td>Λ</td>
<td>1462.93</td>
<td>4.69</td>
</tr>
<tr>
<td>Σ^0</td>
<td>1581.73</td>
<td>4.28</td>
</tr>
</tbody>
</table>
Modelling the source including resonances

Gaussian Core

\[G(r, r_{core}) = \frac{2\sqrt{\pi} r^2}{r_{core}^3} \exp\left(\frac{r^2}{4r_{core}^2}\right) \]

- Shared between particle pairs
- Scales as a function of \(m_T \)

Exponential resonance tail

\[E(r, M_{res}, \tau_{res}, p_{res}) = \frac{1}{s} \exp\left(-\frac{r}{s}\right) \]

\[s = \beta \gamma \tau_{res} = \frac{p_{res}}{M_{res}} \tau_{res} \]

- Specific modulation of each pair
Gaussian core + resonances

- Resonance contribution to Omega yield negligible.
- Modification of the gaussian core for p-Omega pairs coming only from resonances contribution to the proton yield
Effect on the source when smearing resonances
Setting the source

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

The characteristics of the source are **determined from femtosopic analysis of the p-p correlation:**
Assume a p-p known interaction \rightarrow determination of the source size

- **Consider $<m_T>$ dependence of the source due to collective effects:**
 - Femtoscopic p-p fits performed differentially in $<m_T>$ bins
 - $<m_T>$ dependence cross-checked with p-Λ analysis

- **Effect of strong short-lived resonances** computed for all hadrons
Setting the source

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs.

The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation**:

- Assume a p-p known interaction \rightarrow determination of the source size
 - **Consider $<m_T>$ dependence of the source due to collective effects**:
 - Femtoscopic p-p fits performed differentially in $<m_T>$ bins
 - $<m_T>$ dependence cross-checked with p-Λ analysis
 - **Effect of strong short-lived resonances** computed for all hadrons

![Graphs showing dependence of r_0 and r_{core} on $<m_T>$](image-url)
→ Analysis in p-Pb 5.02TeV as a function of charged multiplicity: Interaction changes as a function of the particle distance
p- Correlation function: baseline

Constant baseline

Linear baseline

Quadratic baseline

Best fit for LO: no > 8

Best fit for NLO: no > 10
Λ-Λ analysis

Combination of all analyzed datasets - pp 7 & 13 TeV - p-Pb 5.02 TeV

Test of the agreement between data and the prediction by the Lednicky model in number of sigmas - Under the hypothesis of a common Gaussian source - Small source size limits the prediction power of the Lednicky model
Λ-Λ analysis: Exclusion plot

Combination of all analyzed datasets
- pp 7 & 13 TeV
- p-Pb 5.02 TeV

Test of the agreement between data and the prediction by the Lednicky model in number of sigmas
- Under the hypothesis of a common Gaussian source
- Small source size limits the prediction power of the Lednicky model
$B_{\Lambda\Lambda} = \frac{1}{m_\Lambda d_0^2} \cdot \left(1 - \sqrt{1 + \frac{2d_0}{f_0}}\right)$

- H-Dibaryon: Tight constraints on the allowed binding energy:
 $B_{\Lambda-\Lambda} = 3.2^{+1.6}_{-2.4} \ (\text{stat.})^{+1.8}_{-1.0} \ (\text{syst.}) \ \text{MeV}$
- More stringent than previous measurements
- For more details see arXiv:1905.07209
Kiso Event
Implies an attractive interaction

Deeply bound Ξ^-14N systems

0.174 MeV: 3D atomic state

$B_{\Xi^-} 1.03 \pm 0.18 \text{ (MeV)}$ or 3.87 ± 0.21

E. Hiyama, K. Nakazawa, Annu. Rev. Nucl. Part. Sci. 2018.68.131

IBUKI event
(J-PARC E07)

$B_{\Xi} 1.27 \pm 0.21 \text{ (MeV)}$
p-Ξ^- potential in pure neutron matter

In medium: Many body interaction, average Ξ^- Single particle potential (U_Ξ^-)

Lattice QCD: U_Ξ^- moves from slightly repulsive in symmetric nuclear matter to slightly repulsive U_Ξ^-~6 MeV in pure neutron matter (NS)
p-Ξ⁻: Implications for NS with hyperon content

- RMF models: Equation Of State (EoS) of neutron-rich matter with hyperon content
 → use single particle potential at saturation densities as input

Experimental constraint: Observation of ~2 solar masses NS

Repulsive interaction:
 ⇒ Ξ pushed to high densities
 ⇒ stiffer EoS, higher masses

Weissenborn et al., NPA881 (2012) 62-77
p-Ξ: Future challenges

- For the future: Study correlation function of the excited Ξ^0(1530) state
- Ξ^0(1530) → Ξ^- + π^+
- I = 1 & S = 1 + 2

<table>
<thead>
<tr>
<th></th>
<th>I = 0</th>
<th>I = 1</th>
<th>Detectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Ξ^-</td>
<td>X</td>
<td>✓</td>
<td>No</td>
</tr>
<tr>
<td>p-Ξ^0</td>
<td>X</td>
<td>✓</td>
<td>Difficult</td>
</tr>
<tr>
<td>p-Ξ^-</td>
<td>✓</td>
<td>✓</td>
<td>Yes</td>
</tr>
<tr>
<td>p-Ξ^+</td>
<td>✓</td>
<td>X</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
ALICE pp High Multiplicity data

- **High multiplicity trigger**: 0.1% highest multiplicity with respect to Minimum Bias events (V0M, forward rapidities: $2.8 < \eta < 5.1$, $-3.7 < \eta < -1.7$).
 - Increased yield of Ω baryon
Selection of Ω^- candidates

- Identified by its decay: $\Omega^- \rightarrow \Lambda K^- \rightarrow (p\pi^-)K^-$
- Total of 1.2×10^6 selected ($\Omega^- + \Omega^+$) candidates
- **Purity** of the sample = 75%
- Sidebands analysis delivers the shape of the background correlation function
p-Ω^-: comparison with models

Assume two different (~extreme) scenarios for the computation of the 3S_1 channel:

1.- **Complete absorption** in the 3S_1 channel (à la Morita et al.) with updated r_0
 - r_0 choosen from the condition $|V_{I,II,III}| < |V_{\text{Coulomb}}|$ for $r > r_0$
 - Using the same condition with latest HAL-QCD potential may result in a substantially increased value for $r_0 \to$ negligible

2.- **Complete elastic model** for 3S_1 with a "similar" attraction as 5S_2
Previously available experimental data: STAR

- Study of the p-Ω correlation function in Au-Au collisions at √s_{NN} = 200GeV
- Observable: ratio of the correlation function peripheral/central collisions.
- Comparison with Lattice QCD calculations (with large masses)

Test different fits to Lattice QCD data (delivering three different binding energies of the NΩ):

<table>
<thead>
<tr>
<th>Spin-2 pΩ potentials</th>
<th>V_I</th>
<th>V_{II}</th>
<th>V_{III}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (MeV)</td>
<td>−</td>
<td>6.3</td>
<td>26.9</td>
</tr>
<tr>
<td>a_0 (fm)</td>
<td>−1.12</td>
<td>5.79</td>
<td>1.29</td>
</tr>
<tr>
<td>r_{eff} (fm)</td>
<td>1.16</td>
<td>0.96</td>
<td>0.65</td>
</tr>
</tbody>
</table>

STAR data favor V_{III} with E_b = 27 MeV
Lattice HAL-QCD potential with heavy quarks

- Based on Lattice calculations with heavy quark masses
 - \(m_\pi = 875 \text{ MeV}/c^2 \)
 - \(m_K = 916 \text{ MeV}/c^2 \)

- Used in the STAR p\(\Omega\) analysis in Au-Au collisions at \(\sqrt{s_{NN}} = 200\text{GeV} \)

- Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (\(b_5 \))
 - \(V_{II} \): best fit to Lattice calculations
 - \(V_I / V_{III} \): weaker / stronger attraction

\[
V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2})(e^{-b_5 r} / r)^2
\]

Binding energy (\(E_b \)), scattering length (\(a_0 \)) and effective range (\(r_{\text{eff}} \)) for the Spin-2 proton-\(\Omega\) potentials [24].

<table>
<thead>
<tr>
<th>Spin-2 p(\Omega) potentials</th>
<th>(V_I)</th>
<th>(V_{II})</th>
<th>(V_{III})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_b) (MeV)</td>
<td></td>
<td></td>
<td>26.9</td>
</tr>
<tr>
<td>(a_0) (fm)</td>
<td>-1.12</td>
<td>5.79</td>
<td>1.29</td>
</tr>
<tr>
<td>(r_{\text{eff}}) (fm)</td>
<td>1.16</td>
<td>0.96</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Lattice HAL-QCD potential with heavy quarks

- Based on Lattice calculations with heavy quark masses
 - $m_\pi = 875 \text{ MeV}/c^2$
 - $m_K = 916 \text{ MeV}/c^2$

- Used in the STAR pΩ analysis in Au-Au collisions at $\sqrt{s_{NN}} = 200\text{GeV}$

- Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (b_5)
 - V_{II}: best fit to Lattice calculations
 - V_I / V_{III}: weaker / stronger attraction

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2})(e^{-b_5 r} / r)^2$$

Binding energy (E_b), scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton–Ω potentials [24].

<table>
<thead>
<tr>
<th>Spin-2 pΩ potentials</th>
<th>V_I</th>
<th>V_{II}</th>
<th>V_{III}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (MeV)</td>
<td>–</td>
<td>6.3</td>
<td>26.9</td>
</tr>
<tr>
<td>a_0 (fm)</td>
<td>–1.12</td>
<td>5.79</td>
<td>1.29</td>
</tr>
<tr>
<td>r_{eff} (fm)</td>
<td>1.16</td>
<td>0.96</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Sensitivity of ALICE and STAR data

- Expected correlation function from heavy quark Lattice QCD potentials
- **Smaller radius** source offers the ideal conditions to test the models
- **Better purity** of ALICE data increases the sensitivity of the test

```plaintext
purity 75% (ALICE)
```
p-Ω⁻ Correlation function: source dependence

- Comparison of the C(k*) for the different models for different source assumptions
- Size of the source determined from p-p fitted radius vs \(<m_T> \)
 - core gaussian source + resonances effects
 - pure gaussian source
p-Ω⁻ Correlation function: source dependence

\[5S_2 + ^3S_1 \]

\[\text{purity 75\%} \]

\[r_{\text{core}} = 0.75 \text{ fm + resonances} \]
\[r_{\text{gauss}} = 1. \text{ fm} \]

→ The variation of the models with the source core+resonances vs gauss is as the same level as the one introduced by the the uncertainty of the radius size
p-Ω^- Correlation function (\(^5S_2\)) with distance cutoff

- Correlation function from \(^5S_2\) channel with cutoff in \(r\) (for \(r < r_{\text{cutoff}} \Rightarrow V = 0\))
- HAL-QCD with physical quark masses (t=12): maximum of the \(C(k^*)\) for \(r_{\text{cutoff}} = 0.5\) fm