

New physics - lecture 1

Iacopo Vivarelli University of Sussex

WHEPS 2019 - Weihai - 21st-28th August 2019

What is "new physics"?

- Potentially a **very broad topic** of course...
- In general: look for yet unknown phenomena, with <u>guiding</u> principles, or <u>questions</u>, in mind

• My aim:

- Give an overview of broad areas of **New Physics searches**, mainly at colliders, but not only.
 - •Such that you know the relevant bits to, e.g., listen to talks in conferences,
-while, however, making a selection:
 - •e.g., neutrino physics, although crucial, is neglected

Guiding principles/questions

- •Ask your favourite textbook about open questions connected with particle physics. It will come up with variations on the following:
 - Dark matter (and dark energy)
 - Matter/anti-matter asymmetry
 - (Neutrino masses)
- Plus a bonus track on <u>theoretical</u> open issues of the SM:
 - Hierarchy problem
 - Strong CP
 - Landau pole
 - Gravity (quantum theory of)

What questions are more pressing?

- Difficult to know, we do not even know whether these are the right questions to ask....
- •... and it probably depends on the theorist you ask.....
- Clearly, experimental results drive the answer

Pre-LHC

Post-LHC

- Higgs Boson has any mass (below ~200 GeV if SM assumed)
- Hierarchy problem is key
- Dark matter may be accidental

- Higgs Boson has a mass of ~125 GeV
- Dark matter is key
- Solution to hierarchy problem **may be accidental**

Why is LHC a milestone?

• From "ATLAS - A 25 years Insider Story of the LHC Experiment", talking about the Lausanne meeting in 1984

In this context, it appeared for the first time that it was possible to quantitatively compare the potentials of vastly different accelerators, in terms of answering some of the fundamental questions at the time. These included questions on the existence (or not) of the following: (i) a Higgs boson responsible for the mechanism of the electroweak symmetry breaking, (ii) heavier quarks, including the missing third-generation top quark, and (iii) supersymmetry (see Chap. 9). So it is not a sume included of the sector of the sector

•To a large extent, points (i), (ii) and (iii) have all been completed successfully.

Full exploration of EW scale: known processes

From <u>ATL-PHYS-PUB-2019-010</u>

Full exploration of the EW scale: BEH mechanism

Precision physics - rare heavy flavour decays

Nature 522, 68-72 (2015)

New physics at the EW scale?

Structure

- Today:
 - EW scale supersymmetry (first part)
- Tomorrow:
 - Electroweak supersymmetry (second part)
 - Dark matter
- Last day:
 - Exotica

EW scale Supersymmetry

Outline

- A pragmatic introduction to (EW scale) SUSY
- Inclusive searches
 - Analysis walkthrough
- Exclusive searches
 - Third generation squarks
 - Electroweak production

A pragmatic introduction to (EW scale) SUSY

Supersymmetric solution to hierarchy

Take this argument away, and **there is no guarantee** of SUSY particles within the LHC reach

With SUSY, quadratic effects (big hierarchy) are cancelled exactly, one is left with only logs (little hierarchy)

SUSY is a (broken) symmetry, not a model

For a given model, introduce an operator Q such that

 $Q | \text{fermionic state} \rangle = | \text{bosonic state} \rangle$ $Q | \text{bosonic state} \rangle = | \text{fermionic state} \rangle$

Double the particle family MSSM

SUSY particles masses different from SM partners. SUSY is a broken symmetry.

The Higgs sector

- •The MSSM is a 2 Higgs Doublet Model (2HDM)
 - A single Higgs doublet would give rise to non-supersymmetric Yukawa terms in the Lagrangian.
 - Normally it is assumed that the discovered boson is the lightest scalar h.

Field Content of the MSSM									
Super-	Boson	Fermionic							
Multiplets	Fields	Partners	SU(3)	SU(2)	U(1)				
gluon/gluino	g	\widetilde{g}	8	1	0				
gauge/	W^{\pm},W^{0}	$\widetilde{W}^{\pm},\widetilde{W}^{0}$	1	3	0				
gaugino	В	\widetilde{B}	1	1	0				
slepton/	$(\widetilde{ u},\widetilde{e}^-)_L$	$(u, e^-)_L$	1	2	-1				
lepton	\tilde{e}_R^-	e_R^-	1	1	-2				
$\operatorname{squark}/$	$(\widetilde{u}_L,\widetilde{d}_L)$	$(u,d)_L$	3	2	1/3				
quark	\widetilde{u}_R	u_R	3	1	4/3				
	\widetilde{d}_R	d_R	3	1	-2/3				
Higgs/	(H_d^0,H_d^-)	$(\widetilde{H}_d^0, \widetilde{H}_d^-)$	1	2	-1				
higgsino	(H_{u}^{+},H_{u}^{0})	$(\widetilde{H}_{u}^{+},\widetilde{H}_{u}^{0})$	1	2	1				

The pre-LHC SUSY

The pre-LHC SUSY

Gauge coupling unification

$$\beta_{g_a} \equiv \frac{d}{dt} g_a = \frac{1}{16\pi^2} b_a g_a^3, \qquad (b_1, b_2, b_3) = \begin{cases} (41/10, -19/6, -7) & \text{Standard Model} \\ (33/5, 1, -3) & \text{MSSM} \end{cases}$$

$$\frac{d}{dt}\alpha_a^{-1} = -\frac{b_a}{2\pi} \qquad (a = 1, 2, 3)$$

Evolution of RGE modified by additional particle content in MSSM

Couplings unify at ~ 10¹⁶ GeV

The pre-LHC SUSY

Dark matter

Much more on this tomorrow

Consensus on the **existence of Dark Matter**, but no good particle candidate in SM

In **R-parity conserving** SUSY, the lightest SUSY particle is stable. If it is weakly interacting, it is potentially a good DM candidate

R-parity = (-1)^{3(B-L) + 2s} -1 for sparticles 1 for particles

Lightest SUSY Particle (LSP) is stable

Dark matter

Much more on this tomorrow

Consensus on the **existence of Dark Matter**, but no good particle candidate in SM

In **R-parity conserving** SUSY, the lightest SUSY particle is stable. If it is weakly interacting, it is potentially a good DM candidate

Lightest SUSY Particle (LSP) is stable

Fermion superpartners' mixing

• Supersymmetry dictates the existence of a scalar partner for every fermionic degree of freedom. In MSSM:

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}; u_R, d_R \to \begin{pmatrix} \tilde{u}_L \\ \tilde{d}_L \end{pmatrix}; \tilde{u}_R; \tilde{d}_R$$

- The left and right chiral components of the scalars have the same couplings of the fermionic ones
- And they mix to give mass eigenstates

$$\left(\tilde{u}_L, \tilde{u}_R\right) \rightarrow \left(\tilde{u}_1, \tilde{u}_2\right)$$

 $ilde{u}_1$ is the lightest by convention

Boson superpartners' mixing

• Neutralinos and charginos are **fermionic states**. In MSSM: they arise from the mixing of **Standard Model B and W fields**, and of the **two Higgs doublets**. The mixing matrices are

What do we expect to be produced?

- At a hadron collider:
 - Gluinos and squarks with strong-like production cross section
 - Charginos, neutralinos and sleptons with EW-like production cross section
 - So, for fixed sparticle mass, production largely dominated by squarks and gluinos

Production cross section in general dependent on the full specific spectrum of the model

Figure 10.2: Feynman diagrams for gluino and squark production at hadron colliders from gluon-gluon and gluon-quark fusion.

Decay processes

- Sparticles decay depend:
 - On the sparticle spectrum
 - On the (Standard Model like) couplings
 - On the mixing (right-left for sfermions, for example)

Example

Focus on the stop \tilde{t}_1

 $\begin{array}{ll} \text{Possible decays} \\ \text{A.} & \tilde{t}_1 \rightarrow t \tilde{\chi}_0^1 \\ \text{B.} & \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \text{C.} & \tilde{t}_1 \rightarrow t \chi_2^0 \end{array}$

Assuming $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure wino and mass degenerate, and $\tilde{t}_1 \sim \tilde{t}_L$ and m(stop) much bigger than the top mass, what is the ratio between the branching ratios of B. and C. ? And if $\tilde{t}_1 \sim \tilde{t}_R$, what can we say about the ratio of a), b) and c)? Answer

$$\begin{split} \widetilde{\mathcal{L}}_{n} \sim \widetilde{\mathcal{L}}_{L} & \text{WEAK isospin} \quad \left||\widetilde{T}|_{1}, \widetilde{T}_{s} \right\rangle = \left|\frac{1}{2}, \frac{1}{4}\right\rangle \\ \widetilde{\chi}_{L}^{\circ}, \widetilde{\chi}_{n}^{\pm} \sim WINO \implies |\widetilde{T}| = 1 \qquad \widetilde{\chi}_{L}^{\circ}; |1, \circ\rangle \qquad \widetilde{\chi}_{n}^{\pm} = |1, \pm 1\rangle \\ \begin{pmatrix} t_{1} \\ b_{1} \end{pmatrix} \implies t_{L} = \left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle \qquad b_{L} = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle \\ \frac{BR(\widetilde{t}_{n} \rightarrow \widetilde{\chi}_{n}^{\circ}t)}{BR(\widetilde{t}_{n} \rightarrow \widetilde{\chi}_{n}^{\circ}t)} \sim \qquad \frac{|A(\widetilde{t}_{n} \rightarrow \widetilde{\chi}_{n}^{\circ}t)|^{2}}{|A(\widetilde{t}_{n} \rightarrow \widetilde{\chi}_{n}^{\circ}t)|^{2}} = \\ = \frac{|K|^{2} \left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle \implies |1, \circ\rangle |\frac{1}{2}, \pm \frac{1}{2}\rangle|^{2}}{|K|^{2} \left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle \implies |1, \circ\rangle |\frac{1}{2}, \pm \frac{1}{2}\rangle|^{2}} \\ = \sigma_{R} \quad \text{The SECOND QUESTION} : \quad i \in \widetilde{t}_{n} \sim \widetilde{t}_{R} \quad \text{THEN NO} \\ C_{OUPLINGS} \quad \text{To VINOS} \end{split}$$

Simplified models

- Already used in the LHC **Run 1 (2009-2012)** and definitely in the LHC **Run 2 (2015-2018)**.
- Assume only a few (typically a pair produced particle and the LSP) SUSY particles are relevant.
- For example, let's assume that **the gluinos and the lightest neutralino** are the only "light" particles

Figure 10.2: Feynman diagrams for gluino and squark production at hadron colliders from gluon-gluon and gluon-quark fusion.

Simplified models

- Already used in the LHC **Run 1 (2009-2012)** and definitely in the LHC **Run 2 (2015-2018)**.
- Assume only a few (typically a pair produced particle and the LSP) SUSY particles are relevant.
- For example, let's assume that **the gluinos and the lightest neutralino** are the only "light" particles

Production cross sections

- "Decoupled" production cross sections
- ...and immediately an idea of the sensitivity of the experiments.....

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

March 2019

	Model	Si	gnatur	e ∫.	<i>L dt</i> [fb ⁻	¹]	Mas	s limit				Reference
Inclusive Searches	$ ilde{q} ilde{q}, ilde{q} ightarrow q ilde{\chi}_1^0$	0 <i>e</i> , µ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1	\tilde{q} [2x, 8x Degen.] \tilde{q} [1x, 8x Degen.]		0.43	0.9 0.71	1.55	m(ỹ₁)<100 GeV m(ỹ)-m(ỹ₁)=5 GeV	1712.02332 1711.03301
	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow} q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	36.1	700 700 700			Forbidden	2. 0.95-1.6	0 $m(\tilde{\chi}_1^0) < 200 \text{ GeV} \\ m(\tilde{\chi}_1^0) = 900 \text{ GeV}$	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	$E_T^{ m miss}$	36.1 36.1	ĝ ĝ				1.85 1.2	$m(ilde{\chi}_1^0){<}800\mathrm{GeV}$ $m(ilde{g}){=}50\mathrm{GeV}$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 <i>e</i> ,μ 3 <i>e</i> ,μ	7-11 jets 4 jets	$E_T^{\rm miss}$	36.1 36.1	το ο			0.98	1.8	${f m}(ilde{\chi}_1^0)$ <400 GeV ${f m}(ilde{g})$ - ${f m}(ilde{\chi}_1^0)$ =200 GeV	1708.02794 1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 3 <i>e</i> ,μ	3 <i>b</i> 4 jets	$E_T^{\rm miss}$	79.8 36.1	ĝ ĝ				1.25	2.25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1706.03731
n. squarks production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	$egin{array}{ccc} egin{array}{ccc} eta_1 & & & \ eta_1 & & \ eba_1 & & \ eba$	Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7	m	$\begin{array}{c} m(\tilde{\chi}^0_1){=}300~{\rm GeV},~BR(b\tilde{\chi}^0_1){=}1\\ m(\tilde{\chi}^0_1){=}300~{\rm GeV},~BR(b\tilde{\chi}^0_1){=}BR(t\tilde{\chi}^1_1){=}0.5\\ (\tilde{\chi}^0_1){=}200~{\rm GeV},~m(\tilde{\chi}^\pm_1){=}300~{\rm GeV},~BR(t\tilde{\chi}^\pm_1){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 b	$E_T^{\rm miss}$	139	$egin{array}{ccc} ilde{b}_1 & Forbido \ ilde{b}_1 & \hline \end{array}$	len	0.23-0.48	C	.23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}^0_2,\tilde{\chi}^0_1){=}130\text{GeV},m(\tilde{\chi}^0_1){=}100\text{GeV} \\ \Delta m(\tilde{\chi}^0_2,\tilde{\chi}^0_1){=}130\text{GeV},m(\tilde{\chi}^0_1){=}0\text{GeV} \end{array}$	SUSY-2018-31 SUSY-2018-31
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP	0-2 <i>e</i> , <i>µ</i> 0)-2 jets/1-2 Multiple	$b E_T^{miss}$	36.1 36.1	$ ilde{t}_1$ $ ilde{t}_1$			1.0 0.48-0.84	n	$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $n(\tilde{\chi}_{1}^{0})=150 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{\tau}_{1} \approx \tilde{\tau}_{L}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520
^d g∈ rect	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1 τ + 1 e,μ,τ	2 jets/1 b	E_T^{miss}	36.1	\tilde{t}_1				1.16	m(τ̃ ₁)=800 GeV	1803.10178
a, di	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 е, µ	2 c	E_T^{miss}	36.1 36.1	\tilde{c} \tilde{t}_1 \tilde{t}_2		0.46	0.85		$ \begin{array}{c} m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{t}_{1},\tilde{c}) - m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV} \\ m(\tilde{t}_{-}\tilde{c}) - m(\tilde{\chi}_{0}^{0}) = 5 \text{ GeV} \end{array} $	1805.01649 1805.01649 1711.03301
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> ,μ	4 <i>b</i>	E_T^{miss}	36.1	τ ₁ τ ₂		0.40	0.32-0.88		$m(\tilde{\chi}_1^0) = 0 \text{ GeV}, \ m(\tilde{t}_1) \cdot m(\tilde{\chi}_1^0) = 180 \text{ GeV}$	1706.03986
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1				0.6		$m(ilde{\chi}_1^{\pm})=0$ $m(ilde{\chi}_1^{\pm})=m(ilde{\chi}_1^{0})=10~GeV$	1403.5294, 1806.02293 1712.08119
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		0.42			$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-008
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 <i>e</i> , µ	2 <i>b</i>	$E_T^{\rm miss}$	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$			0.68		$m(\tilde{\chi}_1^0)=0$	1812.09432
≥ct ~	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 <i>e</i> , µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$			1.0		$\mathbf{m}(\tilde{\ell},\tilde{\nu}) = 0.5(\mathbf{m}(\tilde{\chi}_1^{\pm}) + \mathbf{m}(\tilde{\chi}_1^{0}))$	ATLAS-CONF-2019-008
dire	$\chi_1^-\chi_1^+/\chi_2^\circ, \chi_1^+ \to \tilde{\tau}_1 \nu(\tau \tilde{\nu}), \chi_2^\circ \to \tilde{\tau}_1 \tau(\nu \tilde{\nu})$	2τ		E_T^{mass}	36.1		2		0.76	$m(\tilde{\chi}_1^{\pm})$	$ m(\tilde{\chi}_{1}^{\circ})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\circ})+m(\tilde{\chi}_{1}^{\circ})) m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0})) $	1708.07875
	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \! \rightarrow \! \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 36.1	<i>ℓ̃</i> <i>ℓ̃</i> 0.18			0.7		$m(ilde{\chi}_1^0){=}0 \ m(ilde{\chi}_1^0){=}5 \ GeV$	ATLAS-CONF-2019-008 1712.08119
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 <i>e</i> ,μ 4 <i>e</i> ,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1	<u>Й</u> 0.13-0. <u>Й</u>	.23 0.3		0.29-0.88		$ \begin{array}{l} BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 1804.03602
lived cles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{ m miss}$	36.1	$ \begin{array}{ccc} { ilde{\chi}_1^\pm} & & \ { ilde{\chi}_1^\pm} & { ilde{ ilde{U}}} \end{array} $ 0.15		0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
ng- arti	Stable \tilde{g} R-hadron		Multiple		36.1	ğ				2.	D	1902.01636,1808.04095
ЪĞ	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$	s]			2.0	5 2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ,μτ			3.2	$\tilde{\nu}_{\tau}$				1.9	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> , <i>µ</i>	0 jets	E_T^{miss}	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k}]$	≠ 0]		0.82	1.33	$m(\tilde{\chi}_{\perp}^{0})$ =100 GeV	1804.03602
~	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$	4-	5 large-R je Multiple	ets	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 1^{-1})$	100 GeV]		1.0	1.3 1.9	Large $\lambda_{112}^{\prime\prime}$	1804.03568 ATLAS CONE 2018 002
١d٤	$\pi - \pi^0 \pi^0$.		Multiple		26.1	$\tilde{g} = [\lambda''] = 2e-4 + 1e-2]$		0.5	1.0	2.	$m(x_1)=200$ GeV, bino-like	ATLAS CONF 2018 003
Щ	$\begin{array}{c} tI, t \rightarrow tX_1, X_1 \rightarrow tbs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \end{array}$		2 iets + 2 h		36.7	$\tilde{t}_1 [aa, bs]$		0.42	0.61	,	$m(x_1)=200$ GeV, bino-like	1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 <i>e</i> ,μ 1 μ	2 <i>b</i> DV		36.1 136	\tilde{t}_1 \tilde{t}_1 \tilde{t}_1 [1e-10< λ'_{23k} <1e-k	3, 3e-10< λ' _{23k} <	:3e-9]	1.0	0.4-1.45 1.6	$\frac{BR(\tilde{i}_1 \rightarrow be/b\mu) > 20\%}{BR(\tilde{i}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1}$	1710.05544 ATLAS-CONF-2019-006
Only	a selection of the available mas	ss limits on n	new state	s or	1	0 ⁻¹	I			1	Mass scale [TeV]	I

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Inclusive searches

Inclusive searches

- Generic searches that look for the "bread and butter" signature of jets + E_T^{miss} with or without additional features (leptons, b-jets, etc.)
- Optimised for squark and gluino production, but wide sensitivity

Search strategy

1. Define your signal

Take <u>CMS-PAS-SUS-19-006</u> as an example

- 1. Define your signal
- 2. Define your selection M_{T2} = 673 GeV CMS Experiment at LHC, CERN Data recorded: Sat Jun 9 16:36:10 2012 CES $H_{T} = 661 \text{ GeV}$ un/Event: 195915 / 785251965 E-miss = 701 GeV Jet p_T 45 GeV Jet p_T 46 GeV Jet p_T 91 GeV Jet p_T 84 GeV Jet p_T 44 GeV Jet p_T 144 GeV Jet p_T 342 GeV

- E_{T}^{miss} from **undetected** $\tilde{\chi}_{1}^{0}$
- Jets
- Possibly boosted bosons that could end up in a large-R jet with mass ~ boson.
- Possibly leptons
- Possibly endpoints
 - In this example from massive vector boson mass constraints

- 1. Define your signal
- 2. Define your selection

Reduce the background (while taking into account its uncertainty)

From <u>CMS-PAS-SUS-19-006</u> (just an example):

- No leptons, no isolated tracks compatible with leptons
- N_{jets} >2 $H_T = \sum p_T^{jet}$
- $\Delta \phi_{H_T^{\text{miss}},j} > 0.5 \qquad \qquad H_T^{\text{miss}} = -\sum \mathbf{p}_T^{\text{jet}}$

Bin phase space in $N_{jet}, N_{b-jet}, H_T, H_T^{miss}$

- 1. Define your signal
- 2. Define your selection
- 3. Estimate your background

A big chapter:

Strategy driven by **answers to the following questions**:

- How easy it is to determine the background directly from the data?
- How accurate and precise is the MC estimation for a given process?
- Can the data improve the MC prediction?

- Irreducible background:
 - Topology and final state object content similar, or identical to signal
- Reducible background:
 - Topology and/or final state object content different from the signal
 - Dangerous when its cross section is large

- Irreducible background:
 - Topology and final state object content similar, or identical to signal
- Reducible background:
 - Topology and/or final state object content different from the signal
 - Dangerous when its cross section is large

- Irreducible background:
 - Topology and final state object content similar, or identical to signal
- Reducible background:
 - Topology and/or final state object content different from the signal
 - Dangerous when its cross section is large

- $W + jets \rightarrow l\nu + jets$ is **reducible**, so long as the lepton can be identified
- $Z \rightarrow \nu \nu$ is **irreducible** (although it can be suppressed with topological cuts)

Multijet

- Irreducible background:
 - Topology and final state object content similar, or identical to signal
- Reducible background:
 - Topology and/or final state object content different from the signal
 - Dangerous when its cross section is large

- $W + jets \rightarrow l\nu + jets$ is **reducible**, so long as the lepton can be identified
- $Z \rightarrow \nu \nu$ is **irreducible** (although it can be suppressed with topological cuts)

Multijet production is **reducible** (no genuine H_T^{miss} expected)

Reducible background estimation

• $t\bar{t}, W + jets$, single top all potentially enter the 0-lepton selection if $W \rightarrow l\nu$ and lepton lost or is a $\tau \rightarrow h\nu$

CR bins: same as search bins, but with one e or μ

$$b_{i,j} = o_i^{\rm CR} m_{i,j}^{\rm CR} \Gamma_i$$

where o_i^{CR} is the data yield in bin i, $m_{i,j}^{CR}$ is the MC prediction for fraction of process j in bin i of the 1-lepton control region, Γ_i is the ratio of the SR and CR yields

$Z \rightarrow \nu \nu$ estimate

• $Z \rightarrow \nu \nu$ events are irreducible. Estimated with a combination of $\gamma + jets$ and $Z \rightarrow \ell \ell$ events

$$N_{Z \to \nu \overline{\nu}}^{\text{pred}} \Big|_{N_{b,jet}=0} = \langle \rho \rangle \mathcal{R}_{Z \to \nu \overline{\nu}}^{\text{sim}} \gamma \mathcal{F}_{\text{dir}} \beta_{\gamma} N_{\gamma}^{\text{data}} / \mathcal{C}_{\text{data/sim}}^{\gamma}$$

$$\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{data}} - \beta_{\ell t}^{\text{data}} \right)_{j,b,k}}{\left(N_{Z \to \nu \overline{\nu}}^{\text{data}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{data}} = \left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \frac{\left(N_{Z \to \nu \overline{\nu}}^{\text{pred}} \right)_{j,b,k} \mathcal{F}_{j,b}^{\text{pred}} \mathcal{F}_{j,b}^{p$$

In other searches: Background from MC corrected with data

- The contribution of process j in the search bin i is $b_{i,j}(\mu_j, \theta_j)$, where μ_j normally is an unconstrained normalisation factor, and $\vec{\theta}_j$ are the (constrained) nuisance parameters
- Depending on the analysis, μ_j maybe be fixed to 1, or additional **control regions** may be added to improve the accuracy and precision of μ_i , $\vec{\theta}_i$ determination.

- 1. Define your signal
- 2. Define your selection
- 3. Estimate your background
- 4. Systematic uncertainties

- 1. Define your signal
- 2. Define your selection
- 3. Estimate your background
- 4. Systematic uncertainties

Typical Experimental uncertainties:

- -Trigger efficiency
- -Jet energy scale and resolution
- -Lepton energy scale and efficiency
- -b-tagging
- -Luminosity
- -pileup modelling

Theory/modelling uncertainties:

-Generator modelling (μ_F,μ_R , ME/PS matching, α_s scale choice when possible - otherwise compare generators)

- PS uncertainties
- PDF choice

Analysis specific uncertainties

-Background estimation non-closure - ??

- 1. Define your signal
- 2. Define your selection
- 3. Estimate your background
- 4. Systematic uncertainties
- 5. Compare predictions to data

- 1. Define your signal
- 2. Define your selection
- 3. Estimate your background
- 4. Systematic uncertainties
- 5. Compare predictions to data
- 6. Result interpretation

Have I discovered SUSY?

If not, then extract limits

Test statistics
$$q(\mu) = -2 \ln \frac{\mathfrak{L}(\mu, \hat{\theta})}{\mathfrak{L}(\hat{\mu}, \hat{\theta})}$$

And using the CLs prescription

Limits on squarks and gluinos

• Bear in mind these are simplified models

Exclusive SUSY searches

Exclusive searches

- Targeted searches that focus on a specific scenario.
- Profit from specific signatures associated with that scenario.

Third generation squark direct pair production

Electroweak production

The Higgs boson connection

 The Higgs boson mass in the MSSM is determined (at 1-loop) by EW parameters and by the stop masses and mixing

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log\left(\frac{m_S^2}{m_t^2}\right) + X_t^2 \left(1 - \frac{X_t^2}{12}\right) \right] + \cdots$$

Expect stops with mass 0.5-1 TeV max,
 Higgsinos with mass few hundreds GeV

Exercise: derive the curve to the right

 $M_{\tilde{t}}^2 = \left(egin{array}{cc} m_{\tilde{t}_L}^2 + m_t^2 + D_L^t & m_t X_t \ m_t X_t & m_{\tilde{t}_P}^2 + m_t^2 + D_R^t \end{array}
ight)$

• Supersymmetry dictates the existence of a scalar partner for every fermionic degree of freedom. In MSSM:

$$\left(\begin{array}{c}t_L\\b_L\end{array}\right);t_R;b_R\to \left(\begin{array}{c}\tilde{t}_L\\\tilde{b}_L\end{array}\right);\tilde{t}_R;\tilde{b}_R$$

- The left and right chiral components of the scalars have the same couplings of the fermionic ones
- And they mix to give mass eigenstates

$$M_{\tilde{t}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{t}^{2} + D_{L}^{t} & m_{t}X_{t} \\ m_{t}X_{t} & m_{\tilde{t}_{R}}^{2} + m_{t}^{2} + D_{R}^{t} \end{pmatrix}$$

$$M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix}$$

• Supersymmetry dictates the existence of a scalar partner for every fermionic degree of freedom. In MSSM:

$$\left(\begin{array}{c}t_L\\b_L\end{array}\right);t_R;b_R\to \left(\begin{array}{c}\tilde{t}_L\\\tilde{b}_L\end{array}\right);\tilde{t}_R;\tilde{b}_R$$

- The left and right chiral components of the scalars have the same couplings of the fermionic ones
- And they mix to give mass eigenstates

$$M_{\tilde{t}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{t}^{2} + D_{L}^{t} & m_{t}X_{t} \\ m_{t}X_{t} & m_{\tilde{t}_{R}}^{2} + m_{t}^{2} + D_{R}^{t} \end{pmatrix}$$

$$M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix}$$

• Same mass parameter for stop

and sbottom "left"

• Supersymmetry dictates the existence of a scalar partner for every fermionic degree of freedom. In MSSM:

$$\left(\begin{array}{c}t_L\\b_L\end{array}\right);t_R;b_R\to \left(\begin{array}{c}\tilde{t}_L\\\tilde{b}_L\end{array}\right);\tilde{t}_R;\tilde{b}_R$$

- The left and right chiral components of the scalars have the same couplings of the fermionic ones
- And they mix to give mass eigenstates

$$M_{\tilde{t}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{t}^{2} + D_{L}^{t} & m_{t}X_{t} \\ m_{t}X_{t} & m_{\tilde{t}_{R}}^{2} + m_{t}^{2} + D_{R}^{t} \end{pmatrix} \quad Sa an M_{\tilde{t}_{L}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad Pc an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad ef an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad ef an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad ef an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad ef an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{\tilde{b}_{R}}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad ef an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + m_{b}^{2} + D_{L}^{b} & m_{b}X_{b} \\ m_{b}X_{b} & m_{b}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix} \quad ef an M_{\tilde{b}}^{2} = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + m_{b}^{2} + m_{b}^{2} + D_{R}^{b} & m_{b}^{2} + m_{b}^{2} + D_{R}^{b} \\ m_{b}X_{b} & m_{b}^{2} + m_{b}^{2} + D_{R}^{b} \end{pmatrix}$$

 Same mass parameter for stop and sbottom "left"

 Possibly large mixing between left and right component for stop

Direct stop (and/or bottom) pair production

A one-page guide to stops

- Naturalness/hierarchy problem requires relatively light stop(s)
- A **light stop left** implies a **light sbottom left** (but a light stop right does not)
- Unless there is some conspiracy of SUSY parameters, b-jets will be present in stop decay
- •For the stop, the phenomenology depends a lot on whether an **on-shell top quark** can be produced in the decay.
- Higgs mass constraints have (model dependent) implications on stop sector

A well-motivated simplified model

- Assuming **R-parity conservation**:
 - If stop and neutralino are the only light SUSY particles*
 - then the decay is $\tilde{t_1} \rightarrow t^{(*)} \tilde{\chi}_1^0$ with 100% BR

*OR light stop mostly stop right and wino-like chargino and the LSP is a Bino

A wealth of experimental techniques

A wealth of experimental techniques

A wealth of experimental techniques

The electroweak sector - reminder

• Neutralinos and charginos are **fermionic states**. In MSSM: they arise from the mixing of **Standard Model B and W fields**, and of the **two Higgs doublets**. The mixing matrices are

$$\mathbf{M}_{\widetilde{N}} = egin{pmatrix} M_1 & 0 & -c_eta\, s_W m_Z & s_eta\, s_W m_Z \ 0 & M_2 & c_eta\, c_W m_Z & -s_eta\, c_W m_Z \ -c_eta\, s_W m_Z & c_eta\, c_W m_Z & 0 & -\mu \ s_eta\, s_W m_Z & -s_eta\, c_W m_Z & -\mu & 0 \end{pmatrix}$$

$$\mathbf{M}_{\widetilde{C}} = \begin{pmatrix} \mathbf{0} & \mathbf{X}^T \\ \mathbf{X} & \mathbf{0} \end{pmatrix} \mathbf{X} = \begin{pmatrix} M_2 & gv_u \\ gv_d & \mu \end{pmatrix} = \begin{pmatrix} M_2 & \sqrt{2}s_\beta m_W \\ \sqrt{2}c_\beta m_W & \mu \end{pmatrix}$$

The electroweak sector - reminder

• Neutralinos and charginos are **fermionic states**. In MSSM: they arise from the mixing of **Standard Model B and W fields**, and of the **two Higgs doublets**. The mixing matrices are

Lower cross sections for the same mass

Production cross sections small (because of EW couplings)

...and dependent on electroweakino's actual composition

"Standard Model" (scalars and vectors, before EW simmetry breaking)

 $B \\ \vec{W} \\ H_u, H_d$

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
\tilde{B} \\
\tilde{W} \\
\tilde{W} \\
\tilde{h}
\end{array}$

b-ino, 1 neutral state

w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

B

 \tilde{W}

 \tilde{h}

"Standard Model" (scalars and vectors, before EW simmetry breaking)

B

 \vec{W}

 H_u, H_d

SUSY partners (fermions)

b-ino, 1 neutral state

w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

 $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

 $\begin{array}{c}
B \\
\vec{W} \\
H_u, H_d
\end{array} \longrightarrow \begin{array}{c}
B \\
\tilde{W} \\
\tilde{h}
\end{array}$

Let's neglect the mixing

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

Let's neglect the mixing

"Standard Model" (scalars and vectors, before EW simmetry breaking)

SUSY partners (fermions)

higgs-ino, 2 neutral, 2 charged states

Let's neglect the mixing

 $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$
The electroweak sector

"Standard Model" (scalars and vectors, before EW simmetry breaking)

$\begin{array}{c} B \\ \vec{W} \\ H_u, H_d \end{array} \longrightarrow \begin{array}{c} B \\ \tilde{W} \\ \tilde{h} \end{array}$

Let's neglect the mixing

SUSY partners (fermions)

w-ino, 1 neutral, 2 charged states

higgs-ino, 2 neutral, 2 charged states

b-ino, 1 neutral state

 $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$

 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$

Wino-bino

- One of the most studied scenarios
- •WW final state studied mostly in **dilepton final state**
- •WZ mostly three-lepton and di-lepton final states

•Wh offers many different channels depending on Higgs boson decay

Wino-bino

- One of the most studied scenarios
- •WW final state studied mostly in **dilepton final state**
- •WZ mostly three-lepton and di-lepton final states

wino-bino

higgsino
$$\tilde{\chi}_2^{\pm}, \tilde{\chi}_3^0, \tilde{\chi}_4^0$$

$$\stackrel{\text{wino}}{-\!-\!-\!-} \tilde{\chi}_1^\pm, \tilde{\chi}_2^0$$

bino

 $\tilde{\chi}_1^0$

•Wh offers many different channels depending on Higgs boson decay

Wino-Bino-typical background composition

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

• Many more results and interpretations available

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Higgsino LSP

$\mathbf{M}_{\widetilde{N}} =$	M_1	0	$-c_eta s_W m_Z$	$s_{\beta} s_W m_Z$
	0	M_2	$c_eta c_W m_Z$	$-s_eta c_W m_Z$
	$-c_eta s_W m_Z$	$c_eta c_W m_Z$	0	$-\mu$
	$\left\langle \begin{array}{c} s_{eta}s_Wm_Z \end{array} ight angle$	$-s_eta c_W m_Z$	$-\mu$	0 /

- · Going at the heart of the hierarchy problem...
- n_{x1} m₀ [GeV] • Nearly degenerate (mass splitting $\Delta m = o(10 \text{ GeV})$ or less) triplet of states
- Production of $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{\pm}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{\pm}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{\pm}\tilde{\chi}_{1}^{0}$ followed by

$$\tilde{\chi}_2^0 \to W^{(*)} \tilde{\chi}_1^{\pm} \quad \tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0 \qquad \tilde{\chi}_1^{\pm} \to W^{(*)} \tilde{\chi}_1^0$$

• Low pt objects and small Et^{miss}.....

• unless one aims for boosted charginos and neutralinos!

Exercise: assume $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 10 \text{ GeV}$, $p_T^{ISR} = 200 \text{ GeV}$, $m(\tilde{\chi}_{2}^{0}) = 100 \text{ GeV}.$ What is p_{T}^{miss} on average? And p_{T}^{lep} ?

Higgsino LSP - strategy

- Search the m_{II} spectrum in dilepton events with an Initial State Radiation (ISR) jet and E_T^{miss}
- Sensitivity to low p_T leptons crucial
 - Use also single track plus identified lepton

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Higgsino LSP

- LHC sensitivity slowly overcoming that of LEP
- Large progress on this front expected with Run 3 and later with HL-LHC

Long lived Higgsinos

- In the extreme case (large M₁,M₂), the mass separation between Higgsinos is ~ 350 MeV,
- Similarly, Wino LSP has mass separation of ~150 MeV
- The mother particle **becomes long-lived** (typical ct~ 0.8 cm for higgsinos, 6 cm for winos).

$$\Gamma\left(\tilde{\chi}_{1}^{\pm} \to \tilde{\chi}_{1}^{0} \pi^{\pm}\right) = \frac{G_{F}^{2}}{\pi} \cos^{2} \vartheta_{c} f_{\pi}^{2} \delta m^{3} \sqrt{1 - \frac{m_{\pi}^{2}}{\delta m^{2}}}$$

JHEP 06 (2018) 022 JHEP 08 (2018) 016

Results

Wino

- Pair production of 1st and 2nd generation sleptons would lead to Opposite Sign Same Flavour lepton pairs
 - Relatively well constrained experimentally
- Recent exciting results on direct stau production are a highlight for full Run 2
 - Also because of connection with Dark Matter.

Summary (EW scale supersymmetry)

- No evidence for SUSY processes at the LHC (or elsewhere)
- Limits are **always model dependent** to some extent. Limits on specific simplified models **uncomfortably tight**
 - Especially those on gluinos and stops...
 - But limits **a lot more relaxed** in less simplified models (more true for stops than for gluinos)
- Crucial targets like **direct higgsinos** and **staus** are getting enough sensitivity only ~ now.
- General disbelief in the community, mainly lead by **clash of current LHC exclusion limits and future discovery prospects**
 - ... but a solid excess may still appear

Dark matter

Dark matter evidence

- •We inferred the existence of dark matter from its gravitational interaction with ordinary matter and radiation
 - "Anomalous" galaxy's rotational speed, gravitational lensing point, evolution of largescale structure point to the existence of more "stuff" than we see. Modifications to gravity on large scale do not seem able to account for all observations (see D. Clowe et al., Astrophysics J. 648 (2006) L109)

 Quantitative estimate about dark matter density coming (mainly) from fits to Cosmic Microwave Background (CMB) temperature anisotropies.

CMB fits and dark matter

- Multipole fit to two point temperature anisotropies:
 - Well described by ACDM model (which includes cosmological constant and a cold dark matter component)
 - See for example, the <u>Planck</u> <u>Collaboration results</u>.

Picture not fully up to date with values

- Matter in universe largely dominated by cold dark matter.
- Energy/matter content of the universe dominated by dark energy.

$$\Omega_c h^2 = 0.120 \pm 0.001$$

What is dark matter?

- Dark matter from **astrophysical objects** (MACHOS, Primordial Black Holes) disfavoured (see ref [1], [2], [3])
- Weakly Interacting Massive Particles (WIMPS) have been often assumed as a paradigm:
 - WIMP miracle (EW size cross section yielding ~ correct relic density for masses of 1-10⁵ GeV)
 - Arising in **many theories** (R-parity conserving SUSY, lightest KK particle in KK extra dimensions, lightest particle in Little Higgs models, etc.)
- But other candidates also very attractive (Axions and Axion-Like Particles in particular)

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

EW SUSY sector and Dark Matter

• Lightest neutralino: a good dark matter candidate

From EPJC 78 (2018) 3, 256

Where do we look for Dark matter?

• Shake it, make it, break it approach

Where do we look for Dark matter?

• Shake it, make it, break it approach

Indirect detection

- Only to mention that I will not cover it in any detail. Excellent (and reasonably recent) review here.
- Basic idea: detect signal from DM annihilation at ~ rest
- Actual signature depends on the **exact annihilation reaction** taking place. Possible signatures:
 - Gamma rays (either from direct production in 2-body process or from charge particle bremsstrahlung).
 - Excesses in **positrons/electron** and **anti-proton/proton** ratios in cosmic rays.
 - Neutrinos.
- For example: positron spectrum compatible with **diffuse signal** from secondary production of **cosmic rays collisions** plus **a "source" term** causing the structure at higher energy.
- The source could be **dark matter** or of **astrophysical origin**.
- •See <u>Phys. Rev. Lett. 122, 041102</u> and <u>Phys.</u> <u>Rev. Lett. 122, 101101</u> and references therein.

Indirect detection

In a nutshell:

- DM annihilation happening nearly at rest. Available CM energy

 $E_{CM} = 2M_{\chi'}$ where M_{χ} is the DM candidate's mass

- The reaction products will have $E = E_{CM}/2 = M_{\chi}$ when produced

- When detected they will have a cutoff energy at $M_{_{arsigma}}$

Taken from <u>A. Kounine's talk</u> at EPS/HEP

Dark matter direct detection

- Basic idea: detect the **nuclear recoil** of a DM particle interaction with matter.
- Dark matter "wind" in our position in the galaxy is non relativistic ($v \sim 10^{-3}c$). Therefore:

Recoil nuclear energy
$$E_R$$

 $E_R = \frac{1}{2} m_{\chi} v^2 \frac{4\mu_N}{m_N + m_{\chi}} \frac{1 + \cos\theta}{2}$ with $\mu_N = \frac{m_N m_{\chi}}{m_N + m_{\chi}}$

Maximum energy transfer E_R^{\max}

$$E_R^{\text{max}} = \frac{1}{2} m_{\chi} v^2 \sim \frac{1}{2} \left(\frac{m_{\chi}}{1 \text{ GeV}} \right) \text{ keV}$$

Exercise: derive the relation for E_R^{\max}

We need to detect signals of o(10-10⁴) keV

• For particles with speed v, the number of interactions in the detector will be

t :observation time N_T :number of target nuclei σ :interaction cross section

Remember in general $N = \phi \sigma t$

• If DM particles have a distribution of speeds $f(\vec{v})$, then

• This can be re-written using $n = \rho/m_{\gamma'} N_T = M_T/m_N$ and $\epsilon = tM_T$.

• ρ is the local DM density, M_T the detector mass and ϵ the exposure.

$$\frac{dN}{dE_R} = \epsilon \frac{\rho}{m_{\chi}m_N} \int_{v_{\min}} vf(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$$
• Cross section $\frac{d\sigma}{dE_R}$:

• This can be rewritten as

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\nu^2\mu_N^2} \left(\sigma_{\rm SI}F_{\rm SI}^2(E_R) + \sigma_{\rm SD}F_{\rm SD}^2(E_R)\right)$$

• σ_{SI} , σ_{SD} depend on the details of the physical interaction between the DM particle and the nucleus. They are the Spin Independent and Spin Dependent contributions to the cross section. Typically computed using an Effective Field Theory.

- The former is caused by **scalar or vector effective operators** in the Lagrangian, the latter by **axial operators**.
- The E_R dependency of the form factors is relevant only for heavy nuclei

Effective Field Theory

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force d=6

- Dimension-6 operators: form = S, P, V, A, T?
- Due to exchanges of massive particles?
- V-A \rightarrow massive vector bosons \rightarrow gauge theory
- Yukawa's meson theory of the strong N-N force
- Due to exchanges of mesons? → pions
- Chiral dynamics of pions $(d\pi d\pi)\pi\pi$ clue \rightarrow QCD

- Let's now focus on the velocity distribution.
- Standard Halo Model (SHM) is often assumed: in the rest frame of the galactic centre, DM particles distributed in an isotropic isothermal sphere, therefore $f(\vec{v})$ is a Maxwellian distribution.
- However, the detector motion is complex with respect to the galactic centre

- Expected rates for several targets
- Dark matter direct detection experiments exploit:
 - Phonons from nuclear excitations
 (cryogenic detectors)
 - Scintillation signal from excited nuclei

- Ionisation signal
- Often a combination of these.

An example: Dual Phase TPC

Michael Murra - Latest results from the XENON Dark Matter Project - ICHEP 2018, Seoul

- Noble gas in dual phase
- Scintillation signal S1 from primary interaction DM-nucleon
- •Electric field for drifting ionisation electrons:
 - •Delayed S2 signal from ionisation electrons
- Keeping background low is key
 - •Underground experiments, high-purity material, shielding outside sensitive region + self-shielding with fiducial region

Eur. Phys. J. C. (2017) 77:881

Background and results

- Main backgrounds:
 - Electron recoil from γ and β particles in detector, producing electrons
 - Nuclear recoil from α or n (either radiogenic or cosmogenic)
 - For Dual Phase TPCs these are suppressed looking at **pulse shape discrimination** and 2D **\$1/\$2 information**.

Direct detection limits

Spin-independent WIMP limits

- Low-mass region dominated by cryogenic experiments (smaller thresholds but smaller detectors)
- High-mass region dominated by noble gas dual phase TPC

Exercise: take the E_R formula <u>here</u>, consider Ge and Xe and a threshold on E_R , and a maximum speed of 550 km s⁻¹ (galaxy escape velocity). Find the minimum mass that can be detected (taken from <u>here</u>)

A glance to the future

Taken from <u>here</u>

DAMA/Libra (controversial) signal

- •Looking for a **yearly modulation** of rates from DM interactions on Nal crystals (250 kg).
- Signal visible with high statistical significance
 - Under WIMP hypothesis, signal excluded by other experiments.
 - •Work underway to check result with new experiments.

See <u>arXiv:1805.10486</u>

Dark matter (WIMPS) - production

Dark matter production

- Direct detection relies on the **existence** of interaction between hadrons and DM
- That implies DM could be produced in pp collisions
- •The interaction with hadrons will be mediated by some (SM or BSM) particle

Dark matter production

Simplified models

- •EFT approach **not suitable** whenever mediator mass not infinitely large w.r.t. scale probed.
 - ... which is not necessarily the case at the LHC.
- Evolution from EFT approach to simplified model approach
- All discussed within the LHC <u>dark matter</u> <u>forum</u>
- •See, e.g.,
 - arXiv:1507.00966
 - arXiv:1603.04156
 - arXiv:1703.05703
 - arXiv:1705.04664

Strategy

- •Two **complementary** approaches:
 - Dark matter particles **directly produced** interacting **weakly with detector**, leading to ET^{miss}
 - E_T^{miss} + X paradigm: look
 for associated production
 of DM with other objects

Strategy

- •Two complementary approaches:
 - Dark matter particles directly produced interacting weakly with detector, leading to ET^{miss}
 - The mediator certainly couples to hadrons (or no production happens): further decay into SM particles:
 - Searches for resonances

 E_T miss + X

- Simple and versatile signature: **monojet**
 - The invisible final state is boosted
 - Sensitivity to a number of potential new physics processes yielding only invisible objects in the final state:
 - Extra-dimensions (see lecture tomorrow)
 - $X \rightarrow \bar{\nu}\nu$ (with X a new state)
 - Compressed SUSY scenarios
 - etc.

X does not need to be a jet

- See, e.g., Phys. Rev. D 97 (2018) 092005
- Combined search for **mono-jet** and **monovector boson** events.
- Mono-vector boson events selected by tagging anti-k_t R = 0.8 jets compatible with coming from W or Z decay.

Intermezzo - jet substructure

- Possibly one of the most **innovative techniques** of the last few years
- Widely used whenever boosted object (top, W, Z, H, BSM) expected in final state.
- Large cone jet reconstruction normally sensitive to soft QCD/pileup.
- "Cleaning" procedure required in the picture: trimming procedure.
- <u>Soft-Drop procedure</u> yielding calculable, Sudakov-safe observable.

One slide about jet substructure

- N-subjettiness: how "compatible" is a jet to a N-prong structure:
 - Reconstruct N subjets with exclusive k_T. Then:

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

with $\Delta R_{i,k}$ the angular distance between the jet constituent k and the subject i.

 Often ratios between different Nsubjettiness used as discriminator

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Monojet/Mono-V results

- •Main background from W/Z estimated from $\gamma + jets, W \rightarrow l\nu, Z \rightarrow ll$ control regions.
- Careful work of the **theory community** to bring the theoretical uncertainties on, e.g., p_T^{γ}/p_T^Z under control (see for example <u>here</u>).

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Monojet/Mono-V results

- Simplest simplified model: a vector or axial mediator with 5 free parameters:
 - g_q : universal mediator coupling to quarks.
 - g_l : universal mediator coupling to leptons.
 - $g_{\rm DM}$: mediator/DM coupling
 - $m_{
 m med}$: mediator mass.
 - $m_{\rm DM}$: dark matter particle mass
- For example, mono-jet signal proportional to

$$N_S \propto g_q^2 g_{\rm DM}^2$$

Monojet/Mono-V results

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

More E_Tmiss + X

	ATLAS	CMS
jet + MET	JHEP 01 (2018) 126	PRD 97 (2018) 092005
γ + MET	EPJC 77 (2017) 393	JHEP 02 (2019) 074
$Z(\ell \ell) + MET$	PLB 776 (2017) 318	EPJC 78 (2018) 291
V(had) + MET	JHEP 10 (2018) 180	PRD 97 (2018) 092005

	ATLAS	CMS
t + MET	JHEP 05 (2019) 41	HED 02 (2010) 141
tt + MET		JHEP 03 (2019) 141
b + MET	EPJC 78 (2018) 18	
bb + MET		

	ATLAS	CMS
H→bb	PRL 119 (2017) 181804	JHEP 11 (2018) 172 EPJC 79 (2019) 280
$H \rightarrow \gamma \gamma$	PRD 96 (2017) 112004	JHEP 09 (2018) 046
$H \rightarrow \tau \tau$		
H→WW		
H→ZZ		CMS PAS EXO-18-011 (new)
Combination		

Resonant mediator search

• If the mediator **couples to quarks** in production, then it must couple to quarks **for its decay** with intensity

$$N_S \propto g_q^4$$

- Di-jet resonance analyses give a lot of sensitivity to mediator
 - But for different values of $g_{q'}$, $g_{l'}$, also **di-lepton** resonances
 - •And for more complex DM models, other resonant analyses (diboson, di-higgs, HV, etc.) would become relevant.

Background directly from the data

- Main example: resonant searches
 - Background is normally fit with a smooth function (sometimes a simple polynomial)

Di-jet analysis

• Look for a bump on a smooth parametrised background

- •Low mass acceptance limited essentially by trigger threshold
 - Huge rate from QCD di-jet events
- Two strategies to overcome this:
 - •Trigger level analysis/data scouting.
 - •ISR + di-jet

See arXiv:1806.00843, ATLAS-CONF-2019-007

Overcoming QCD dijet rate

See <u>arXiv:1806.00843</u>, <u>Phys. Rev.</u> Lett. 121 (2018) 081801

• Data scouting/Trigger Level Analysis

Size on tape \propto Event size \times rate

• If information saved kept to a minimum, event rate can be high

Overcoming QCD dijet rate

- To go even lower in m_{jj}: look at ISR + di-jet.
- See for example <u>arXiv:1905.10331</u>

- Look at an Anti-k_T R = 0.8 jet with a two-prong substructure
 - Grooming done with soft drop
- The modelling of the jet mass distribution done through a parametrisation developed in dedicated control regions.

Putting everything together

Vector-like couplings

• Note the choice of the couplings

How to understand the plot

Vector-like couplings

• Note the choice of the couplings

Spin-independent DM limits

Spin-dependent SM limits

Other DM candidates: axions

 $L_{\rm CP} = \frac{\alpha_s}{8\pi} \theta \tilde{G}_a^{\mu\nu} G_{\mu\nu a}$

- Among the other DM candidates, **axions** are appealing.
- Axions are **pseudo-goldstone bosons** of the (spontaneously broken) Peccei-Quinn symmetry.
- •Let's start from the beginning. The QCD Lagrangian contains a CP violating term.

This would predict for the neutron EDM d_n

$$d_n = 2.4 \cdot 10^{-16} \theta e \text{ cm}$$

Experimentally $|d_n| < 2.9 \cdot 10^{-26} e \text{ cm}$, which implies $\theta < 1.3 \cdot 10^{-10}$ for no good reason.... Peccei-Quinn symmetry explains this as a result of a spontaneously broken symmetry. This introduces a relation between **the axion mass** m_a and the **PQ scale** f_a

$$m_a = 5.70 \ \mu \text{eV}\left(\frac{10^{12} \text{ GeV}}{f_a}\right)$$

Axions and ALPs

• Axions interactions with SM are $\sim \frac{1}{f_a}$ (therefore small)

- Axions interact with photons (EM field) with strength fixed by m_a and f_a
- A set of astrophysical limits indicate $f_a > 10^8 \text{ GeV}$
- Axion Like Particles (ALP) do not have a fix constrain between f_a and m_a

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Dark matter axions

- Different cosmological scenarios point to different ranges of allowed m_a to match DM relic density
- •Scenario A and B refer to whether the PQ symmetry is broken **before or after inflation**
- •The bottom line is that DM axions have mass of **meV or lower.**

Note that the De Broglie length for, e.g.,

 $m_a = 40 \ \mu {
m eV}$ and DM speed $v \sim 10^{-3} \ c \ {
m is}$

$$\lambda = \frac{2\pi}{m_a v} \sim 10^{10} \text{ eV}^{-1}$$

Remember $\hbar c = 197 \text{ MeV} \cdot \text{fm}$, then λ is macroscopic

DM axions detection

- Detect a microwave monochromatic signal
 - Historically done with EM cavity with strong B
 - New technique: use of Fabry-Perot resonator MADMAX and others

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Beam dump experiments

• Large beam intensities on fixed targets can probe limited mass scales, but very small couplings.

• A paradigm that applies to few different scenarios, among which ALPs and, for example, dark photons.

Beam dump experiments

Plots taken from <u>Phys.</u> <u>Rev. D 98, 035011</u>

Summary (dark matter)

- No (uncontroversial) DM detection (either at LHC or direct detection experiments) beside through gravitational interactions.
- Complementarity between the different approaches in the search for DM.
- Direct detection experiments will **soon reach** the neutrino floor:
 - Directional detection is the only idea on the market for the moment.
- At the same time LHC is kind of starting to **saturate its sensitivity** (at least to "large" cross sections).
 - But hard to say how and when the next generation of colliders will take part to the quest.

What is "exotic physics"?

- It is a very broad category of models, which can basically be defined as "anything which is not R-parity conserving SUSY"
- Many experiments attacking "exotic physics":
 - LHC (certainly ATLAS and CMS, but also LHCb)
 - B-factories (BaBar, Bell, soon Bell II)
 - Fixed target experiments (beam dump electron and hadron, neutrino accelerator experiments, NA62, SHiP and SeaQuest soon?)
 - Lower energy experiments (g-2, $\mu \rightarrow e\gamma$, etc.)

Where to find additional resources

- ATLAS Exotics Public Results
- ATLAS SUSY Public Results
- ATLAS Higgs And Diboson Searches
- <u>CMS SUSY Public Results</u>
- <u>CMS Exotica Public Results</u>
- CMS Beyond 2 Generations
- LHCB QCD, Electroweak and Exotica

Outline

- Long-Lived particles
- Prompt signals
 - Extra-Dimensions
 - Resonances
 - Lepto-quarks
 - Vector-Like quarks
- Reinterpreting searches

Long-Lived particles

Long lived (LL) particles

- One of the **most active fields** of research for BSM in the last few years.
- What "long-lived" means depends on the context:
 - At LHC the scale is set by the resolution on the transverse position of the primary vertex. If L > 100 μm 1 mm the particle is LL

Long lived particles

• Why is a particle long lived?

Few examples

- Small coupling:
 - Neutral naturalness: twin, color neutral sector, for example coupling to the Higgs boson through twin top partners.
- Heavy mediator:
 - Split SUSY: gluinos relatively light but squarks heavy.
- Small mass splitting:
 - Already discussed **Wino-like SUSY** LSP doublet.

Signatures of LL particles

Common items in LL signature detection

• Normally low background, but hard to rely on any simulation

- Trigger: low-level trigger not always LL particle compliant
 - For example displaced vertices and disappearing track analyses **trigger on MET** rather than the LL particle itself.

See <u>arXiv:1906.06441</u>

A few examples

- Look for **displaced jets** based on the timing in the EM calorimeter. Highlight of the selection:
 - Topological selections based on jet shower shape (e.g. E_{em}/E_{had})
 - Small RMS of timing of associated cells.
 - Events / 0.5 ns • Small fraction of jet energy attached to PV.
 - Background estimated with a series of control regions obtained by inverting the analysis requirements.

A few examples

- Heavy BSM particles **will be slow** and **ionise** a lot:
 - Use dE/dx information combined with timing of calorimeter and muon spectrometer.
- •Background estimated exploiting independence of timing and ionisation information.

See Phys. Rev. D 99 (2019) 092007

Summary on LL particles

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

July 2019

Complementarity (depending on the signature)

LL particles: looking ahead

<u>FASER</u>

Prompt searches

Where to start from? Maybe from the end

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	⁻¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH huiltijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ multi-chann \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ - \\ 2 \ j \\ \geq 2 \ j \\ \geq 3 \ j \\ - \\ el \\ \geq 1 \ b, \geq 1 J \\ \geq 2 \ b, \geq 3 \end{array}$	Yes - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp 7.7 TeV m Ms 8.6 TeV m Mth 8.9 TeV m Mth 9.5 TeV m GKK mass 2.3 TeV k GKK mass 1.6 TeV k KK mass 3.8 TeV T	$\begin{array}{l} p=2\\ p=3 \text{ HLZ NLO}\\ p=6\\ p=6, M_D=3 \text{ TeV, rot BH}\\ q(\overline{M}_{Pl}=0.1\\ q(\overline{M}_{Pl}=1.0\\ q(\overline{M}_{Pl}=1.0\\ q(\overline{M}_{Pl}=1.0\\ q(\overline{M}_{Pl}=1.0\\ q(\overline{M}_{Pl}=1.0)\\ q(\overline{M}_{Pl}=1.0\\ q(\overline{M}_{Pl}=1.0) \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to \tau\tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm SSM} \ W' \to \tau\nu \\ {\rm HVT} \ V' \to WZ \to qqqq \ {\rm model} \ {\rm B} \\ {\rm HVT} \ V' \to WH/ZH \ {\rm model} \ {\rm B} \\ {\rm LRSM} \ W_R \to \mu M_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ \end{array}$ $\begin{array}{c} 0 \ e, \mu \\ multi-channel \\ 2 \ \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1 J - 2 J el el 1 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 3.0 TeV W' mass 3.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV W mass 3.25 TeV Wa mass 3.25 TeV Wa mass 5.0 TeV	T/m = 1% $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j ≥1 b, ≥1	– – j Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $\Gamma_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM $VV\chi\chi$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ M) 0 e, μ 0 e, μ 0-1 e, μ	$egin{array}{c} 1-4\ j\ 1-4\ j\ 1\ J, \leq 1\ j\ 1\ b,\ 01\ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} 1.55 TeV g m _{med} 1.67 TeV g M, 700 GeV m m _φ 3.4 TeV y	$\begin{array}{l} \chi_q \!\!\!=\!$	1711.03301 1711.03301 1608.02372 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV β LQ mass 1.56 TeV β LQ ⁴ mass 1.03 TeV ½ LQ ⁴ mass 970 GeV ½	$\begin{split} & \beta = 1 \\ & \beta = 1 \\ & \beta(LQ_3^u \to b\tau) = 1 \\ & \beta(LQ_3^d \to t\tau) = 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;P \rightarrow Hb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-chann multi-chann $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el ≥ 1 b, ≥1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	j Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV S B mass 1.34 TeV S T _{5/3} mass 1.64 TeV £ Y mass 1.85 TeV £ B mass 1.21 TeV £	$\begin{array}{l} {\rm SU}(2) \mbox{ doublet} \\ {\rm SU}(2) \mbox{ doublet} \\ {\rm S}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ {\rm S}(Y \rightarrow Wb) = 1, \ c_R \ (Wb) = 1 \\ {\rm g}_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV o q* mass 5.3 TeV o b* mass 2.6 TeV o /* mass 3.0 TeV A v* mass 1.6 TeV A	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \begin{array}{r} 1 \ e, \mu \\ 2 \mu \\ 2,3,4 \ e, \mu \ (Si \\ 3 \ e, \mu, \tau \\ - \\ = \\ = 13 \ TeV \\ rtial \ data $	≥ 2 j 2 j S) – – – – – –	Yes - 3 TeV lata	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV 3.2 TeV m H ^{±±} mass 870 GeV D D H ^{±±} mass 400 GeV D D multi-charged particle mass 1.22 TeV D D monopole mass 2.37 TeV D D 10 ⁻¹ 1 10 10	$\begin{split} & m(W_R) = 4.1 \text{ TeV, } g_L = g_R \\ & \text{ PY production } \\ & \text{ Y production, } \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ & \text{ Y production, } q = 5e \\ & \text{ Y production, } g = 1g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
							mass scale [lev]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Where to start from? Maybe from the end

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

 f_{γ} lets $+ \mathbf{F}^{\text{miss}} \int f dt [fb^{-1}]$

ATLAS Preliminary

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Re	fere	nce

	Model	l,γ Je	ets† E _T ^{miss}	∫£ dt[fb	p ⁻¹] Limit	Reference
\Rightarrow	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW / ZZ$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu & 1 \\ 2 \ \gamma & - \\ \hline - & 2 \\ 2 \ \gamma & \\ \hline - & 2 \\ \gamma & \\ multi-channel \\ \eta & 0 \ e, \mu & \\ 1 \ e, \mu & \geq 1 \\ 1 \ e, \mu & \geq 2 \end{array}$	- 4 j Yes 2 j - ≥ 2 j - ≥ 3 j - 2 J - x, ≥ 1J/2j Yes b, ≥ 3 j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
\Rightarrow	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell\\ \mathrm{SSM}\ Z' \to \tau\tau\\ \mathrm{Leptophobic}\ Z' \to bb\\ \mathrm{Leptophobic}\ Z' \to tt\\ \mathrm{SSM}\ W' \to \ell\nu\\ \mathrm{SSM}\ W' \to \tau\nu\\ \mathrm{HVT}\ V' \to WH/ZH\ \mathrm{model}\ B\\ \mathrm{LRSM}\ W_R \to tb\\ \mathrm{LRSM}\ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2\ e,\mu\\ 2\ \tau\\ -\\ 1\ e,\mu\\ 1\ e,\mu\\ 1\ \tau\\ el\ B\ 0\ e,\mu\\ multi-channel\\ 2\ \mu\end{array} \ge 1\ b$	 2 b _ _ 2 1J/2j Yes _ Yes 2 J _ 1 J _	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 3.6 TeV V' mass 3.2 S TeV W _R mass 3.2 S TeV W _R mass 5.0 TeV	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ ≥1	2 j – – – b, ≥1 j Yes	37.0 36.1 36.1	Λ 21.8 TeV η _{LL} Λ 40.0 TeV η _{LL} Λ 2.57 TeV IC4t1 = 4π	1703.09127 1707.02424 1811.02305
	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac D		-4j Yes -4j Yes I, ≤1j Yes , 0-1J Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c } \hline m_{med} & $1.55 \ {\rm TeV}$ & $g_q=0.25, \ $g_z=1.0, \ $m(\chi)$ = 1 \ {\rm GeV}$ \\ \hline m_{med} & $1.67 \ {\rm TeV}$ & $g_{=1.0, \ $m(\chi)$ = 1 \ {\rm GeV}$ \\ \hline m_{ϕ} & $700 \ {\rm GeV}$ & $m(\chi)$ < 150 \ {\rm GeV}$ \\ \hline m_{ϕ} & $3.4 \ {\rm TeV}$ & $y=0.4, \ $\lambda=0.2, \ $m(\chi)$ = 10 \ {\rm GeV}$ \\ \hline \end{tabular}$	1711.03301 1711.03301 1608.02372 1812.09743
	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$ \begin{array}{rcl} 1,2 \ e &\geq \\ 1,2 \ \mu &\geq \\ 2 \ \tau && \\ 0-1 \ e, \mu && \\ \end{array} $	≥ 2 j Yes ≥ 2 j Yes 2 b – 2 b Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV $\beta = 1$ LQ mass 1.56 TeV $\beta = 1$ LQ mass 1.63 TeV $\beta (LQ_3^{\circ} \rightarrow br) = 1$ LQ ^a mass 970 GeV $\mathcal{B}(LQ_3^{\circ} \rightarrow tr) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
мвен	$ \begin{array}{c} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + 2 \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	$\begin{array}{c c} \mbox{multi-channel} \\ \mbox{multi-channel} \\ \mbox{X} & 2(SS)/{\geq}3 \ e,\mu \geq 1 \\ & 1 \ e,\mu & \geq 1 \\ & 0 \ e,\mu,2 \ \gamma & \geq 1 \\ & 1 \ e,\mu & \geq \end{array}$	b, ≥1 j Yes b, ≥ 1j Yes b, ≥ 1j Yes ≥ 4 j Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet T _{5/3} mass 1.64 TeV SU(2) doublet Y mass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Y mass 1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass 1.21 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
E voitord	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton v^*	- 1 γ - 1 3 e,μ 3 e,μ,τ	2j – 1j – b,1j – – –	139 36.7 36.1 20.3 20.3	q* mass 6,7 TeV only u* and d*, A = m(q*) q* mass 5.3 TeV only u* and d*, A = m(q*) b* mass 2.6 TeV only u* and d*, A = m(q*) c* mass 3.0 TeV A = 3.0 TeV v* mass 1.6 TeV A = 1.6 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$1 e, \mu \geq 2 \mu$ $2,3,4 e, \mu (SS)$ $3 e, \mu, \tau$ $-$ $-$ $\sqrt{s} = 13 \text{ TeV} \qquad \checkmark$ partial data	≥ 2 j Yes 2 j – – – – – – – s = 13 TeV full data	79.8 36.1 36.1 20.3 36.1 34.4	N° mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Extra-Dimensions

- First introduced **in 1920s by Kaluza and Klein** to unify gravity with other forces:
 - Additional dimensions w.r.t. ordinary 3+1 (space + time).
 - Additional dimensions **compactified** \implies boundary conditions on the fields \implies KK excitations.
- Idea developed further **during 1970s**, **1980s and 1990s** in the context of superstring theory.
- 1998 Arkani-Hamed, Dimopoulos, Dvali develop the ADD extra-dimensions
- Soon after that, development of Randall-Sundrum (RS) warped extra-dimensions

KK theories (in a nutshell)

• A an illustrative example: assume we have a complex scalar field living on a 5D spacetime. The action would be

$$S_5 = -\int d^4x \, dy \, M_5 \left[|\partial_\mu \phi|^2 + |\partial_y \phi|^2 + \lambda_5 |\phi|^4 \right]$$

• If the 5th dimension is compactified with the topology of a circle $(\phi(x, y) = \phi(x, y + 2\pi nR))$, I can rewrite the field with a Fourier expansion

$$\phi(x,y) = \frac{1}{\sqrt{2\pi R M_5}} \sum_{n=-\infty}^{\infty} e^{iny/R} \phi^{(n)}(x)$$

• The action becomes $S_5 = S_4^{(0)} + S_4^{(n)}$

 $S_4^{(0)} = -\int d^4x \left[|\partial_\mu \phi^{(0)}|^2 + \lambda_4 |\phi^{(0)}|^4 \right]$ • That is, a 4D theory with a set of KK modes with

$$S_4^{(n)} = -\int d^4x \, \sum_{n \neq 0} \left[|\partial_\mu \phi^{(n)}|^2 + \left(\frac{n}{R}\right)^2 |\phi^{(n)}|^2 \right] \qquad \qquad m_n \sim \frac{n}{R}$$

ADD extra-dimensions - the idea

- Potential solution to the hierarchy problem: in a higher dimensional world, gravity is as strong as the EW interaction. It looks small because we see its 4D projection.
- •Let's assume that the only scale is $m_{EW} \sim 1 \text{ TeV}$ and that there are n additional dimensions with a scale R. The Planck scale in n + 4 dimensions is $M_{pl(n+4)} \sim m_{EW}$

In natural units, G in n+ 4 dimensions is
$$G_{n+4} = \left(\frac{1}{M_{pl(n+4)}}\right)^{n+2}$$

• The Gauss law on a mass m at a distance $r \ll R$ is

$$\int \frac{m}{M_{pl(n+4)}^{n+2} r^{n+2}} dS^{n+2} = \frac{m}{M_{pl(n+4)}^{n+2}}$$

ADD extra-dimensions - the idea

• If $r \gg R$ however

$$\int \frac{m}{M_{pl(n+4)}^{n+2} r^{n+2}} dS^{(n+2)} \sim \int \frac{m}{M_{pl(4)}^2 r^2} dS^{(2)} R^n = \frac{m}{M_{pl(n+4)}^{n+2}} \implies M_{pl}^2 \sim M_{pl(n+4)}^{2+n} R^n$$

If $M_{pl(n+4)}^{2+n} \sim m_{EW'}$ $R \sim 10^{\frac{30}{n} - 17} \text{cm} \times \left(\frac{1 \text{TeV}}{m_{EW}}\right)^{1+\frac{2}{n}}$

• For n = 2, $R \sim 0.1 - 1 \text{ mm}$ (hence the name "large" extradimensions)

Extra-dimensions signatures

ADD:

- Real production of (invisible)
 graviton ⇒ mono-X analyses sensitive

- Already discussed in the context of DM
- Exchange of virtual graviton leads
 to a continuum of KK states ⇒ Excess
 of di-fermion, di-photon high mass
 states

- **Black hole production** from modified Schwarzshield radius.

RS: additional **resonances from discrete KK excitations**

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Mono-jet limits on ADD extra-dimensions

- •Graviton produced in the collision would show up as **missing transverse momentum** in the detector.
- Mono-X analyses are sensitive to these scenarios.

Non-resonant di-lepton searches

Additional heavy resonances

- Additional vector bosons arise in many BSM models (extra-dimensions, left-right symmetric SU(2) models, extra symmetry groups, grand-unification models (SU(5), E(6)), etc).
 - Phenomenology driven by assumed couplings to SM and BSM particles.
 - In general expect resonances in di-lepton, di-jet, di-bosons, etc.
- Many other models predict all sort of **possible resonant combinations** (RPV SUSY, vector like quarks, etc.)
- •LHC experiments do all permutations below

Starting from the easiest final states....

- Di-jet covered extensively in the context of DM
- Di-lepton resonances are among the cleanest signatures possible

 $\sigma_{fid} \times B \; [fb]$

10

10

 10^{-2}

10

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

... into more complex final states

- Diboson resonances at the heart of LHC investigation in these last few years
- It is, in fact, an **ensemble of analyses**.

• Do a combined fit to m_{jet1} ,

Example: full-hadronic diboson

 $m_{jet2}, m_{jj}.$

• All three variables should show a resonant behaviour for the signal.

•Select events with anti- k_T R=0.8

jets (soft drop grooming),

whose substructure is

compatible with that of V/H \rightarrow jj.

• Jet calibration and background modelling are the challenges of the analysis.

k runs over the jet constituents

148

See <u>arXiv:1906.05977</u>

Example: full-hadronic diboson

HVT model (in a nutshell)

- Heavy Vector Triplett (HVT) model commonly used in interpretation of diboson searches
 - Introduce a SU(2) triplett \mathscr{W} of colourless vector bosons with zero U(1) hypercharge yielding a nearly degenerate $W^{'\pm}, Z'$
 - The interaction Lagrangian is assumed to be

$$\mathcal{L}_{W}^{\text{int}} = -g_q \mathcal{W}_{\mu}^a \bar{q}_k \gamma^{\mu} \frac{\sigma_a}{2} q_k - g_\ell \mathcal{W}_{\mu}^a \bar{\ell}_k \gamma^{\mu} \frac{\sigma_a}{2} \ell_k - g_H \left(\mathcal{W}_{\mu}^a H^{\dagger} \frac{\sigma_a}{2} i D^{\mu} H + \text{h.c.} \right)$$

- Normally g_{ℓ}, g_q are assumed to be universal w.r.t. generation.
- Branching fractions for $W' \to WZ$, $W' \to WH$, $Z' \to WW$, $Z' \to ZH$ all similar for high V' mass.

 $g_f = g_q = g_l$

• Two models often used:

• Model A:
$$g_H = -0.56, g_f = -0.55$$

• Model B:
$$g_H = -2.9, g_f = 0.14$$

HVT interpretations

 Combination of analyses yields direct sensitivity to limits on couplings in HVT models

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Moving on

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	- ¹] Limit	·	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS } G_{KK} \rightarrow WW/ZZ \\ \text{Bulk RS } G_{KK} \rightarrow tt \\ \text{2UED } / \text{RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ e, \mu \end{array}$ $\begin{array}{c} 2 \ \gamma \\ \hline \\ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 j \\ - \\ 2 j \\ \geq 2 j \\ \geq 3 j \\ - \\ el \\ 2 J \\ \geq 1 b, \geq 1J \\ \geq 2 b, \geq 3 \end{array}$	Yes - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mo 7.7 TeV Ms 8.6 TeV Muh 8.9 TeV Mth 8.2 TeV Muh 9.55 TeV GKK mass 4.1 TeV GKK mass 2.3 TeV GKK mass 3.8 TeV KKK mass 3.8 TeV KKK mass 1.8 TeV	$ \begin{split} n &= 2 \\ n &= 3 \; \text{HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \; \text{TeV, rot BH} \\ n &= 6, M_D = 3 \; \text{TeV, rot BH} \\ k/\overline{M}_{PI} &= 0.1 \\ k/\overline{M}_{PI} &= 1.0 \\ K/\overline{M}_{PI} &= 1.0 \\ \Gamma/m &= 15\% \\ \hline \text{Tier} (1,1), \ \mathcal{B}(A^{(1,1)} \to tt) = 1 \end{split} $	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to t\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqq \ \text{model} \\ \text{HVT } V' \to WH/ZH \ \text{model B} \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ \tau \\ B \\ 0 \ e, \mu \\ \\ multi-channe \\ 2 \ \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1J - 2 J el el 1 J	_ /2j Yes Yes Yes _	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 3.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 2.93 TeV Wr _k mass 3.25 TeV Wr _k mass 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j 	– – j Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac E $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM) 0 e, µ DM) 0 e, µ 0 e, µ) 0-1 e, µ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes Yes Yes Ves	36.1 36.1 3.2 36.1	m _{med} 1.55 TeV m _{med} 1.67 TeV M _* 700 GeV m _φ 3.4 TeV	$\begin{array}{l} g_q{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 {\rm GeV} \\ g_q{=}1.0, m(\chi) = 1 {\rm GeV} \\ m(\chi) < 150 {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
Ъ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 μ 2 τ 0-1 <i>e</i> ,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ* mass 1.03 TeV LQ* mass 970 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime} \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime} \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;F_{5/3}\; T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;QQ \rightarrow WgWq \end{array} $	multi-channe multi-channe $2(SS)/\geq 3 e_{,1}$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el ≥ 1 b, ≥1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	j Yes .j Yes .j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.65 TeV B mass 1.21 TeV Q mass 690 GeV	$\begin{split} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{split}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q' mass 6.7 TeV q' mass 5.3 TeV b' mass 2.6 TeV '' mass 3.0 TeV v' mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell r$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \begin{array}{r} 1 \ e, \mu \\ 2 \ \mu \\ 2,3,4 \ e, \mu (S) \\ 3 \ e, \mu, \tau \\ - \\ - \\ 5 = 13 \ TeV \\ a \ tial \ data \end{array} $	≥ 2 j 2 j S) – – – – –	Yes - 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production $B(H_L^{\pm \pm} \rightarrow \ell \tau) = 1$ DY production, $ g = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	pe	and and	Tun u	atu			Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Leptoquarks

- Models with baryon and lepton number violation sometimes foresee the presence of resonance decaying in quarks and leptons.
- Leptoquarks carry both lepton and baryon number
- Main model used <u>Buchmüller-</u> <u>Rückl-Wyler model</u>

Spin	3B + L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
0	-2	$\overline{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\overline{3}$	2	5/6	$ar{q}_L^c \gamma^\mu e_R$ or $ar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$ar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$ar{d}_R\ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$ar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar{q}_L \gamma^\mu \ell_L$

Leptoquarks in a nutshell

- They can be **pair-produced** or **singly produced**.
 - Single LQ production subdominant, but relevant for very high LQ masses.
- Scalar LQ production cross section normally **much larger** than vector LQ:
 - Focus on scalar.
- Pair-production cross section depends only on LQ mass.
- •BR into charged leptons parametrised as a function of a parameter β . $\beta = 1 \implies BR(\ell^{\pm}q) = 100\%$
 - Therefore $BR(\nu q) \propto (1 \beta)$
- •Normally study 1st, 2nd, and 3rd generation LQ (depending on the fermion generation they couple to).

Leptoquark resonances

See <u>arXiv:1902.00377</u>, <u>Phys.</u> <u>Rev. D 99 (2019) 032014</u>

• 1st and 2nd LQ search example: analysis based on the presence of two lj resonances (or lvjj resonance), exploited with a BDT in the following variables

Channel	Input variables
lljj	$m_{\mathrm{LQ}}^{\mathrm{min}}, m_{\ell\ell}, p_{\mathrm{T}}^{j2}, p_{\mathrm{T}}^{\ell 2}, m_{\mathrm{LQ}}^{\mathrm{max}}$
lvjj	$m_{\mathrm{LQ}}, m_{\mathrm{LQ}}^{\mathrm{T}}, m_{\mathrm{T}}, E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{j2}, p_{\mathrm{T}}^{\ell}$

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

(1st and 2nd generation) LQ limits

LQ signatures and similarities

I. Vivarelli - "New Physics" - WHEPS - 21st-28th August 2019

Recent revamp of attention on leptoquarks

- A number of flavour anomalies reported in the past years
- A (probably non-exhaustive) list from a non-expert:
 - Semi-rare $b \rightarrow s\mu\mu$ transitions (angles and BR) (see PLB 781 (2018) 517 and references therein)
 - Lepton Flavour Universality in (loop suppressed) $b \rightarrow s\ell\ell$ transitions.
 - Lepton Flavour Universality in (tree level) $b \rightarrow c \ell \nu$ transitions.

Recent revamp of attention on leptoquarks

× 2.0

1.5

1.0

LHCb

Recent revamp of attention on leptoquarks

Potential explanations for flavour anomalies

- <u>arXiv:1906.01222</u> and references therein
- A step by step EFT discussion <u>here</u>
- A solution in terms of an additional Z' boson here
Moving on

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

		Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit	j .		Reference
	Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS } G_{KK} \rightarrow WW/ZZ \\ \text{Bulk RS } G_{KK} \rightarrow tt \\ \text{2UED / RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \end{array}$ multi-channe $\begin{array}{c} 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 j \\ - \\ 2 j \\ \geq 2 j \\ \geq 3 j \\ - \\ el \\ 2 J \\ \geq 1 b, \geq 1 J \\ \geq 2 b, \geq 3 \end{array}$	Yes - - I/2j Yes 5 j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp Ms Min Min GKK mass GKK mass GKK mass KK mass KK mass		7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 1.6 TeV 3.8 TeV 1.8 TeV	$ \begin{split} n &= 2 \\ n &= 3 \; \text{HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \; \text{TeV, rot BH} \\ n &= 6, M_D = 3 \; \text{TeV, rot BH} \\ k/\overline{M}_{PI} &= 0.1 \\ k/\overline{M}_{PI} &= 1.0 \\ K/\overline{M}_{PI} &= 1.0 \\ \Gamma/m &= 15\% \\ \text{Tier (1,1), } \mathcal{B}(\mathcal{A}^{(1,1)} \to tt) = 1 \end{split} $	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
	Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqqq \mbox{ model } \\ \text{HVT } V' \to WH/ZH \mbox{ model } B \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \end{array}$ B 0 e, μ multi-channe multi-channe 2 μ	_ 2 b ≥ 1 b, ≥ 1J _ 2 J el el 1 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W _R mass W _R mass		5.1 TeV 2.42 TeV 3.0 TeV 6.0 TeV 3.7 TeV 3.6 TeV 2.93 TeV 3.25 TeV 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
	CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, µ ≥1 e,µ	2 j _ ≥1 b, ≥1	– – j Yes	37.0 36.1 36.1	Λ Λ Λ		2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
	MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac E $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM) 0 e, μ DM) 0 e, μ 0 e, μ I) 0-1 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes Yes j Yes J Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M _* m _{\$\$}	1. 700 GeV	55 TeV 1.67 TeV 3.4 TeV	$\begin{array}{l} g_q{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 {\rm GeV} \\ g{=}1.0, m(\chi) = 1 {\rm GeV} \\ m(\chi) < 150 {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
	Ъ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 μ 2 τ 0-1 <i>e</i> ,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1. 1 1.03 TeV 970 GeV	4 TeV 56 TeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\nu} \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^{d} \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
>	Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;BT_{5/3}\;T_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe $2(SS)/\geq 3 e_y$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el $\mu \ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	j Yes Lj Yes Lj Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.37 1.34 	7 TeV TeV .64 TeV 1.85 TeV eV	$\begin{split} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{split}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
	Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -	- - - -	139 36.7 36.1 20.3 20.3	q* mass g* mass b* mass t* mass v* mass		6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
	Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \frac{1 e, \mu}{2 \mu} 2,3,4 e, \mu (SS 3 e, \mu, \tau) $	≥ 2 j 2 j S) - - - - - -	Yes 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	№ mass N _R mass H ^{±±} mass multi-charged particle mass monopole mass	560 GeV 870 GeV 1.22 T	3.2 TeV eV 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell \tau) = 1 \\ \text{DY production}, g &= 5e \\ \text{DY production}, g &= 1g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
		pa	artial data	full o	data		10-1		1 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Vector-Like Quarks

- VLQ for dummies (to learn more see, for example, <u>arXiv:1306.0572</u>) :
 - These are **color-triplet**, spin 1/2 fermions whose **left and right chiralities** transform **the same** way under weak isospin.
 - Mass terms not **explicitly forbidden** by SU(2) symmetry \rightarrow They do not get mass through coupling with the Higgs field.
 - In their simplest realisation, they manifest as singlets $T_{L,R}^0$, $B_{L,R}^0$, of charge 2/3, -1/3 Doublets and triplets can also be considered.
 - They normally couple preferentially to 3rd generation quarks, due to large mixing.

- A plethora of **possible final states** possible depending on the BR of $T \rightarrow bW$, tH, tZ and $B \rightarrow tW$, bH, bZ.
- Targeted with an **ensemble of analyses** (either dedicated or targeting similar final states)
 - For example, final states of *tt* inv, *bb* inv equivalent to LQ or stop, sbottom production.

Analysis	$T\bar{T}$ decay	$B\bar{B}$ decay
H(bb)t + X [16]	$HtH\bar{t}$	-
$W(\ell\nu)b + X$ [30]	$WbW\overline{b}$	-
$W(\ell\nu)t + X$ [32]	-	$WtW\overline{t}$
$Z(\nu\nu)t + X$ [33]	$ZtZ\overline{t}$	-
$Z(\ell\ell)t/b + X$ [35]	$ZtZ\overline{t}$	$ZbZ\overline{b}$
Tril./s.s. dilepton [36]	$HtHar{t}$	$WtWar{t}$
Fully hadronic [37]	$HtH\bar{t}$	$HbH\overline{b}$

Vector-like quarks

Assuming $BR(T \rightarrow Wb) + BR(T \rightarrow Ht) + BR(T \rightarrow Zt) = 1$

Vector-like quarks

Assuming $BR(T \rightarrow Wb) + BR(T \rightarrow Ht) + BR(T \rightarrow Zt) = 1$, $BR(B \rightarrow Wt) + BR(B \rightarrow Hb) + BR(B \rightarrow Zb) = 1$

Reinterpreting/Recasting LHC analyses

- A crucial aspect of searches: they are nice if they can be applied to models not used in the original publication
- •The experiments provide a wealth of material to the community to be able to reinterpret searches, usually through <u>HepData</u>

Tools for recasting LHC searches

• A full list available <u>here</u>

Constraints On New Theories Using Rivet

Exploring the sensitivity of unfolded collider measurements to BSM models

Summary - exotica

- Plenty of searches **trying to turn every stone**, but no positive result.
- Searches for **long-lived particles** and **small couplings** are where a lot of the effort and the innovation is going.
- A long programme ahead still (although we would have enjoyed some solid excess at this point in the LHC life).

Grand-Summary

- I believe that high-energy physics (and in particular collider physics) is **at a turning point**.
 - Plenty of evidence for "unexplained things", but no **reference energy scale** to target.
 - Is this **a stalemate** (no actual winner, but no winning move left)?
- Hierarchy and Dark Matter are not solved:
 - Searches + precision + direct detection is still the way to go.
 - The LHC has **a 15 years programme ahead**. Any other collider joining the fun? e⁺e⁻ precision is the obviously next step
 - Big improvements at the horizon for DM direct detection (e.g. DarkSide).
 - A positive detection would still need a collider to understand what physics this is...
- •Keep an eye on PAMELA/AMS02 positron excesses, flavour anomalies. New physics might actually be in plain sight.

AMS02 antiproton results

• Taken from <u>A. Kounine's talk</u> at EPS/HEP

