

Prompt open charm production in proton-lead collisions with LHCb

Di Yang (Tsinghua University) On behalf of the LHCb Collaboration August 18th 2019

QPT 2019 The 13th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT 2019)

Outline

- Introduction
- The LHCb detector
- LHCb pPb data samples
- Prompt D^0 production in 5.02 TeV pPb collisions
- Prompt Λ_c^+ production in 5.02 TeV pPb collisions JHEP 10 (2017) 090
- Summary and outlook

- Cold nuclear matter effects:
 - Modification of parton distribution functions: nPDF or CGC
 - Energy-loss due to collisions and gluon radiation

Heavy flavor states are good probes in heavy-ion collisions

 $> m_{\rm c} > \Lambda_{\rm OCD}$: allows perturbative calculations

Experience whole time evolution of collision

- Interacting with co-moving particles...
- Observables
 - \succ Nuclear modification factor R_{pPb}
 - \succ Forward-backward ratio $R_{\rm FB}$
 - ➢ Baryon-meson ratio

Introduction

Shadowing

Eur. Phys. J. C (2017) 77:163

The LHCb detector

A single arm general purpose detector at forward rapidity !

IJMPA 30 (2015) 1530022

LHCb pPb data samples

Forward: *p*Pb

Backward: Pbp

• $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV} (2013)$ > pPb (1.06 nb⁻¹)+ Pbp(0.52 nb⁻¹)

• Rapidity coverage

 $y^* = y_{lab} - y_{cms}$ rapidity in nucleon-nucleon cms $Ay = \pm 0.465$ Forward (pPb): $1.5 < y^* < 4.0$ Backward (Pbp): $-5.0 < y^* < -2.5$ Common region: $2.5 < |y^*| < 4.0$

- Reconstructed through decay channel: $D^0 \rightarrow K^- \pi^+$
- Obtain D^0 yields $N(D^0 \rightarrow K^- \pi^+)$ by fitting invariant mass distribution:
 - Signal: Crystal Ball + Gaussian, $f * f_{CB}(\mu, \sigma, a, n) + (1 f) * f_{Gauss}(\mu, \gamma \sigma)$
 - $\succ a$, γ , f are fixed by MC samples and n = 1
 - ➢ Background: linear

JHEP 10 (2017) 090

• Extract prompt D^0 by fitting $\chi^2_{\rm IP}$ distribution

- Prompt: AGE function, peak position and width are free to float, other parameters are fixed by simulation
- \succ From *b*: Gaussian
- Background: sideband data

Prompt D^0 : cross section

- The uncertainty is the quadratic sum of the statistical and systematic components
- $\varepsilon(p_{\rm T}, y)$: effeciency estimated from simulation and PID sample
- $\sigma(p_{\rm T} < 10 \ {\rm GeV}/c$, $1.5 < y^* < 4.0) = 230.6 \pm 0.5 ({\rm stat}) \pm 13.0 ({\rm sys}) \,{\rm mb}$
- $\sigma(p_{\rm T} < 10 \text{ GeV}/c$, $-5.0 < y^* < -2.5) = 252.7 \pm 1.0(\text{stat}) \pm 20(\text{sys}) \text{ mb}$

Λ_c^+ production

• Reconstructed through decay channel: $\Lambda_c^+ \rightarrow p K^- \pi^+$

- Obtain Λ_c^+ yields $N(\Lambda_c^+ \rightarrow pK^-\pi^+)$ by fitting invariant mass distribution: > Signal: Gaussian
 - ➢ Background: linear

Prompt Λ_c^+

Background: sideband data

Prompt Λ_c^+ : cross section

- Double-differential cross section: $\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y dp_{\mathrm{T}}} = \frac{N(\Lambda_c^+ \to pK^- \pi^+; p_T, y)}{\mathcal{L} \times \varepsilon(p_{\mathrm{T}}, y) \times \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+) \times \Delta y \times \Delta p_{\mathrm{T}}}$
- $\varepsilon(p_{\rm T}, y)$: effeciency estimated from simulation and PID sample
- $\sigma(2 < p_{\rm T} < 10 \text{ GeV}/c, 1.5 < y^* < 4.0) = 32.1 \pm 1.1(\text{stat}) \pm 3.2(\text{sys}) \text{ mb}$
- $\sigma(2 < p_{\rm T} < 10 \text{ GeV}/c$, $-5.0 < y^* < -2.5) = 27.7 \pm 1.8(\text{stat}) \pm 3.8(\text{sys}) \text{ mb}$

- *R*_{pPb} suppressed at forward rapidity
 ➤ Slight increase with increasing *p*_T
- R_{pPb} close to 1 at backward rapidity
- Data are consistent with models with nPDF, CGC

JHEP 10 (2017) 090

• Data have smaller uncertainties than theory QPT 2019; open charm in LHCb

Prompt D^0 : nuclear modification factor

Data have smaller uncertainties than theory

Prompt D^0 : forward-backward ratio

- $R_{\rm FB} < 1$ and decreases with rapidity
- Data agree with calculations using various nPDF sets
- Data have smaller uncertainties than theory

JHEP 10 (2017) 090

• Data agree with calculations using various nPDF sets

• $R_{\Lambda_{c}^{+}/D^{0}} = \frac{d^{2}\sigma_{\Lambda_{c}^{+}}(p_{T},y^{*})/dp_{T}(dy)}{d^{2}\sigma_{D^{0}}(p_{T},y^{*})/dp_{T}(dy)}$

- Theoretical calculation are based on measured pp results from LHCb
- nPDF uncertainties cancel in baryon/meson ratios
- Forward: consistent with theory in lower p_{T} and below theory in higher p_{T}
- Backward: consistent with theory for all p_{T}

Prompt open charm: baryon/meson ratio

- $R_{\Lambda_{c}^{+}/D^{0}} = \frac{d^{2}\sigma_{\Lambda_{c}^{+}}(p_{T},y^{*})/dp_{T}(dy)}{d^{2}\sigma_{D^{0}}(p_{T},y^{*})/dp_{T}(dy)}$
- Theoretical calculation are based on measured pp results from LHCb
- nPDF uncertainties cancel in baryon/meson ratios
- Data is consistent with theory for all y^{*}

Summary and outlook

- LHCb has excellent capabilities to study heavy flavour in heavy ion studies
- Production of D^0 and $\Lambda_{\rm c}^+$ are measured in 5.02 TeV $p{\rm Pb}$ collisions by LHCb
 - $\geq R_{pPb}^{D^0}$ is significantly suppressed in the forward and more precise than theory so that can be used to constrain model
 - $\geq R_{FB}^{D^0}$ and $R_{FB}^{\Lambda_c^+}$ agree with nPDF calculations and $R_{FB}^{D^0}$ has smaller uncertainties than theory
 - $\geq R_{\Lambda_c^+/D^0}$ agrees with model except in forward high p_T bins
- Production of open charm in 8.16 TeV and more species such as D_s^+ , D^* in 5.02 TeV pPb collisions are under study
 - Multiplicity dependence

Thank you!