

Longitudinal dependence of B and D mesons and heavy flavor leptons nuclear modification factor in relativistic heavy ion collisions

Caio A. G. Prado

with Wen-Jing Xing, Shanshan Cao, Guang-You Qin, Xin-Nian Wang

13th Workshop on QCD phase transition and relativistic heavy ion physics

恩施,2019年8月18日

Introduction

Monte-Carlo simulation

Results

Summary

Baryonic Density

Heavy Ion Collisions

- Experimental assessment of nuclear matter
- Properties of the Quark Gluon Plasma

• The case for heavy flavor:

- Pre-equilibrium production (hard scattering)
- Long relaxation times
- $m_{\rm Q} > \Lambda_{\rm qcd} \Rightarrow pqcd$ calculations
- Strongly affected by QGP
- Weakly affected by late time evolution
- Hard fragmentation
- Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}, y) = \frac{1}{\mathcal{N}} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}\,\mathrm{d}y}{\mathrm{d}N_{\rm pp}/\mathrm{d}p_{\rm T}\,\mathrm{d}y}$$

Current status

- Simultaneous description between R_{AA} and v_2 ?
- Multiple models with different physics seems to qualitatively describe the data
- How can we further constraint the models to better understand what's really going on?
- One alternative: bet on new observables not very well explored yet (higher order harmonics, event shape engineering, soft-heavy correlations, longitudinal dependence, ...)

- So far longitudinal dependence of observables are still in development;
- The medium dynamics can be very different at large rapidity: temperature, size, ...
- Is it possible to discriminate similar models on an analysis of the large rapidity spectra?

- Coding of the simulation:
 - C++/Fortran, коот and рутнія
 - Modular programming (QCD factorization)
 - Freedom in executing different hydro backgrounds.
- Transport model
 - Relativistic Langevin equation: $\frac{dp}{dt} = -\eta_D(p)p + \xi + f_g$
 - Classic fluctuation-dissipation relation with $D(2\pi T) = 7$
 - f_{g} : recoil due to gluon emission.
- Hadronization
 - Hybrid fragmentation plus coalescence:
 - $T_c = 165 \text{ MeV}.$
 - No re-scattering in the final hadronic phase.
- Heavy quarks probes:
 - Sampled at the beginning of the simulation
 - No medium response is implemented.

- Input of the program;
- 3D profiles for the hydro:
 - Energy density;
 - Temperature;
 - Transverse velocity;
 - Longitudinal velocity;
- т_Rемто initial conditions (IP-Glasma);
- Quarks position given by Glauber Model;
 - Initial momentum distribution given by pQCD (LO).
- Viscous average 3D+1 hydrodynamics: clvisc
 - $\eta/s = 0.15;$
 - $T_{\rm fo} = 165 \, {\rm MeV};$
 - $\tau_0 = 0.6 \, \text{fm/c};$
 - s95p-рсе EoS.

arXiv:1802.04449

Results Heavy quark density distribution

Caio Prado

Longitudinal dependence of B and D mesons R_{AA} in relativistic heavy ion collisions

• Production spectra reaches lower p_T with large rapidity.

- Good agreement with data for D meson
- Crossing of R_{AA} curves at low p_T only clear for B meson
- Due to lower collision energy, large rapidity is limited on p_{T}

- Good agreement with data for electrons
- Overall behavior from B and D is propagated to electrons

- Good agreement with CMS data for D mesons
- Data from ALICE disagrees with CMS.
- Again we observe crossing happening at low p_T for B meson

- For large p_T we observe good agreement with data for both electrons and muons
- Experimental error bars cover all the three curves for muon
- In the low $p_{\rm T}$ regime, simulation underestimates the data

- We observe the same behavior as for $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$
- Good agreement with CMS experimental data

- Simulation results matches both electrons and muons data.
- Larger p_T range of experimental data allows for more clearer separation in rapidity

- With increasing rapidity, R_{AA} tends to decrease
- Interplay between medium and production spectra
- Production spectra prevails and generates more suppression

Caio Prado

Longitudinal dependence of B and D mesons RAA in relativistic heavy ion collisions

- Longitudinal dependence of R_{AA} of charm quarks and D mesons:
 - Interplay between heavy flavor production spectra and medium size compete at large rapidity
 - Production spectra dominates R_{AA} results at large rapidity
 - Nuclear modification factor becomes flat with p_{T} at large rapidity
 - Different behavior depending on $p_{\rm T}$ regime
 - Further exploring the large rapidity regime might be able to provide further constraints on phenomenological models
- Future prospects:
 - Include comparison for other transport models
 - Study elliptic azimuthal anisotropy for heavy mesons
 - Event-by-event computations.