

Contribution ID: 44 Type: not specified

Light-flavor and charm quark hadronization in ultra-relativistic pp and pPb collisions

Summary

We show that the experimental data of midrapidity p_T spectra of $\Omega(sss)$ and $\varphi(ss)$ in high-multiplicity events in pp and pPb at LHC energies has the property of constituent quark number scaling. This is a direct signal of strange quark combination hadronization and provides a convenient tool to extract the quark distribution at hadronization. We find that such a scaling is well established in heavy-ion collisions in a broad collision energy range (11.5-2760GeV). We show the data of p_T spectra of different light-flavor hadrons such as K^, ϕ , proton, Λ , Ξ and Ξ ^ and Ω in pp and pPb collisions at LHC energies can be well fitted by a simple quark combination model under the equal velocity combination approximation. Furthermore, we show the equal velocity combination of charm quark with light-flavor quarks can well explain the data of p_T spectra of D mesons and Λ_c ^+ baryon in range p_T -8 GeV in pp and pPb at LHC. The nontrivial p_T dependence of Λ_c ^+/D^0 ratio is well described.

Primary authors: Dr SONG, Jun (Jining university); Prof. SHAO, fenglan (qufu normal university)

Presenter: Dr SONG, Jun (Jining university)