QPT 2019

Enshis, China

Flavor hierarchy of jet quenching in relativistic heavy-ion collisions

Abstract

Summary Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) D mesons compared to charged hadrons for transverse momenta larger than $6-8 \mathrm{GeV}$, which remains a mystery since heavy quarks typically lose less energies in quark-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of B mesons and B-decayed D mesons by the CMS Collaboration provide a unique opportunity to study the flavor hierarchy of jet quenching. Using a linear Boltzmann transport model combined with hydrodynamics simulation, we study the energy loss and nuclear modification for heavy and light flavor jets in high-energy nuclear collisions. By consistently taking into account both quark and gluon contributions to light and heavy flavor hadron productions within a next-to-leading order perturbative QCD framework, we obtain, for the first time, a satisfactory description of the experimental data on the nuclear modification factors for charged hadrons, D mesons, B mesons and B-decayed D mesons simultaneously over a wide range of transverse momenta $(8-300 \mathrm{GeV})$. This presents a solid solution to the flavor puzzle of jet quenching and constitutes a significant step towards the precision study of jet-medium interaction. Our study predicts that at transverse momenta larger than $30-40 \mathrm{GeV}, B$ mesons also exhibit similar suppression effects to charged hadrons and D mesons, which may be tested by future measurements.

Reference:
[1] Wen-Jing Xing, Shanshan Cao, Guang-You Qin, and Hongxi Xing, arXiv:1906.00413

Primary authors: Prof. QIN, Guang-You (Central China Normal University); Prof. XING, Hongxi (South China Normal University); Dr CAO, Shanshan (Wayne State University); Ms XING, Wen-Jing (Central China Normal University)

Presenter: Ms XING, Wen-Jing (Central China Normal University)

