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Introduction

Chiral Kinetic Theory and Berry Phase

e Kinetic theory has many applications in nuclear physics,
astrophysics, cosmology and condensed matter physics. Earlier it's
relativistic version misses the effect triangle anomaly

1

(Breaking of the axial symmetry at quantum level !)

o For Fermi liquid, this deficiency has been fixed by including the

effect of Berry Phase and Berry Curvature! (), = + %

@ The effect of Berry phase and curvature modify the particle number
current together with transport equation.
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Introduction

Chiral Anomaly and Chiral Kinetic Theory

Chiral Kinetic Theory is obtained (Talks by Xu-Guang Huang, Shu Lin,
Jianhua Gao,...)

e Field Theory Approach? -
{Ao +p' (1 + ‘;‘1}3) Ay — CEPEIA (X, 1) =0

2p2

o Effective Field Theory Approach

o High density Effective Theory (HDET)
[ Son, Yamamoto, PRD (2014) |
o On-Shell Effective Field Theory (OSEFT)

. N ijk g k i
[Ao +p (1 n %) A, — SEPTEABL AT (X, 1) = 0.

4p

[ Carignano, Manuel, Torres-Rincol, PRD (2018) ]

2Hidaka, Pu, Yang, PRD (2017), PRD (2018),
Gao, Liang, Pu, Q. Wang, X.-N. Wang, PRD (2011),
Huang, Shi, Jiang, Liao, Zhuang, PRD (2018)



Introduction

High Density Effective Theory

o High density effective theory (HDET) valid in the vicinity of Fermi
surface.

@ Constructed by removing the fast modes from Lagrangian
Lo = P(y" D)y + e,
With E4 = p+ |p| : Energy of (anti-)particles

@ At low energy, particles with £, ~ 0 = slow modes

antiparticles with E_ ~ —2p = fast modes



High Density Effective Theory

e Decomposing the energy and momentum of fermions as®

p° = p+1%and p = pv + L with 91 < p with

J 7op=uvEL+

P@) = 5y X [4a(0) + ()] [+ AT

Effective Lagrangian:
Legs = v1,Y DMy,

JDL DJ_( i - D)wj_
,u

= erv[w D+ 12

[0

uto order O(1/u?)

3Hong, PLB (1998), NPB (2000)
Schafer NPA (2003)
Son, Yamamoto, PRD (2013)




Equations of Motion

@ Equation of motion emerging from the effective Lagrangian is
satisfied by the two-point function

Dm Gv(x,y) — 0’ G,U(ZL',y) D:Z = 0,

P_G,(z,y) =0, Gy(z,y)P- =0 [Projection Condition]

o The gauge invariant Wigner function is*

GU(X,Z):/e“'S Go(X +5/2,X —5/2)U(X —5/2,X + 5/2).

with Wilson line defined as

Yy
U(y,z) = Pexp [— z/ dz”AM(z)},
T
path ordering P from y to x.

4Elze, NPB (1986)
Vasak, Ann. of Phys.,(1987)




Equations of Motion

The terms 1" = [ et S( D Gy (z,y) £ Golz,y) Dé"”)
with n =0, 1, 2 result into

19 =216, 1 = " AL G,
1 _ .
I_(,'_l):;[flﬁi‘FBV:I G’U7 I<1) i‘iAHG”’

1 - - _
I " [41“[2L —4[;(B-v)+2B -1, +2(E x 1) ]G
(2)__L TR SR(72 . ijk k- m A
I = 12 [(4lHl (1 —B V) < v o, F > _,]GU,
A, =0, —Fu al and [* = (I* — A*) : kinetic momentum of particle.

Disagree with Son and Yamamoto, PRD (2013) at O(1/u?).



Equations of Motion

From I(f) terms

. 1, 1,
G, = 27TP+6<ZO—Z||—E[ZL—B~V]+ﬁ[l”(ll—B~v)]
1
+ W[B~ll+(Exl)ov])nv(X,l),

ny,(X,1): distribution function.

e PUZZLE: é-function = dispersion relation depends on v and not
invariant under Reparametrization!



Reparametrization Invariance and Frame Dependence

@ The momentum decomposition®: p* = pv* + I* is not unique.
o vk — vl =k 4 guk, M — ¥ =" —pdvH, v-dv=0.
Under reparametrization transformation (RT)
by =ipdv - Ty — % (1 - milpl)%,
- ; 1 &

1
SL =liv- D, + 931D | STERTE Dmﬂ/)v 0.

5Killian, Ohl, PRD (1994),
Finkemeier, Georgi, Irvin, PRD (1997)

Sundrum, PRD (1998)
o



Reparametrization Invariance Equations of Motion

Under RT L R
troG, (X, l) = ﬁévinvks”kter(X, l) + i(SUjZiAijtl’Gv(X, l)

Arises from antiparticle contribution

with Ay = ;5 — v; v;. Wigner function is not invariant under RT!

6Ij([n) = /e”'s(DJ(c")Gv(x,y) + Gv(x,y)Dz(”)) =0, Invariant under RT

Contributions of Differential operators and Gauge invariant Wigner
function cancels each other.



Reparametrization Invariance Equations of Motion

19 =20.1G,, 19 = A (”;U,
V= ! [ 2+
o

(2) _
+

19 = L[ =o' @ - Bov)a, - (9, )8,

Vi| Gv, I(l)

%[41’”13 — 4 (B-v)+2B -1+ 2(E x1)-v|G,

Dispersion relation and CKE depends on v and not unique

Expected: antiparticle contribution is v dependent!



Transport Equation

We use a natural scheme by making a choice 1 || v, or equivalently I} = [,
I, =06

W3 Va M=o
¥ v - ’
i
B-vi -
If) = — /LQV Gva
2 1 o ) .. =
@ 442 [— "B - vA, + 0" €70 Fy A G

5Hands, PRD (2004)
o



Transport Equation

@ Combining plus equations as

B-v B:-vij-
0 1 2
1O+ 1+ 19 =200 - 1)+ —— - ——|G
1 1
_Bp
2p
Same as dispersion relation for particle in magnetic field.

In terms of original momentum py =
@ Using P+év = C?UPJr = év, év can be parametrize as

- B-v B-vi
Gv = 27T5<l0 —l—l- W - Tﬂ) nv(X, 1)P+

n, is the distribution function



Transport Equation

In terms of full momentum p = uv +1:

ni B-p IRpIEF + BY
{A[) +p (1 + 2]72> Ai - TAz} 7LVU(X,I) =0.

Agrees with OSEFT approach upon identifying a cut-off between two
theory”.

CKE from field theory approach®

v Bf) Eijkf)jEk _
[Ao +p (1 + o2 ) A — TAJ"(X’Z) =0

"Cariganano, Manuel, Torres-Rincon, PRD (2018)
8Hidaka, Pu, Yang, PRD (2017), PRD (2018)



Constitutive Equation

From j* = ¢ Tote, particle number and total current is

1 ~
n = (27T)4/<1+2|:B V:I)ter(X7l),
-7 1 1 ym, m—v
= g [l gt (S

— 2B-wvv' + F,;0"v™e ZJm)}trG (X,1).
We used scheme condition 1 || v to simplify the expression

Agrees with [Manuel et al. PRD (2018)] after identifying a cut-off.



Equivalence of Chiral Kinetic Equation

Distribution function n and n, are coefficients of §-function of G and Gv

G- / (@)t (U (y2), Gy = / €51y ()0 (1)U (3, ).

S

using (z) = € (14 o (=ilp 1) ) o (x)

1, : Dressed particle

trG = trG, — #liAjters”mvm =n=n, — ﬁliAjnvs”mvm



Equivalence of Chiral Kinetic Equations

. N ijk ik
20+ 5 (14 2R) Ay - B A n(X,1) = 0
[CKE from Field Theory formalism]
0
N - (ki gk i
[Ao +p (1 + %) Ay — %Az} ny(X,1) =0

[CKE from HDET formalism]



Conclusions

@ We revisit CKT and find it differs from its counterpart from field
theory approach at higher order of (1/u). It agrees with the CKE
obtained by OSEFT.

@ Despite the disagreement, both CKE obtained from field theory and
effective field theory formalisms are equivalent with the difference
being choices of degrees of freedom.

@ Under Reparametrization transformation of Fermi velocity v,
distribution function and CKE both transforms. A specific choice
v || 1 results into our CKE.



Thanks...



