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✓QCD, quark-gluon plasma (QGP)
✓Early stage of universe, relativistic heavy-ion collisions at 
laboratory

The QCD Phase Diagram: Expectations and Challenges Reinhard Stock

1. Introduction: Motivation

The phase diagram of strongly interacting matter represents the, perhaps, most challenging
open problem within the Standard Model of elementary interaction. Its most prominent feature, the
deconfinement transition line between hadrons and partons, has been first addressed by R. Hage-
dorn [1], well before the advent of QCD, in his studies of the limiting temperature occuring in
hadron-resonance matter. The resulting phase boundary, at about T = 160−170MeV (that concurs
with an energy density of about 1GeV/ fm3), was subsequently understood [2, 3] as the location of
the QCD hadron to parton deconfinement transition. At such low temperature, and corresponding
meanQ2, deconfinement can not be the consequence of QCD asymptotic freedom - the perturbative
QCD mechanism that was first envisaged [4, 5] - but falls deeply into the non-perturbative QCD
sector, as does the resulting confined hadron structure. In fact, non-perturbative QCD theory on the
lattice has, for two decades, postulated that the hadron-parton phase transformation occurs in the
vicinity of Hagedorn’s limiting temperature [6, 7], at zero baryochemical potential.
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Figure 1: Sketch of the QCD phase diagram in grand canonical variables T, µB. A critical point E is
indicated which ends the crossover transition domain at µB below E . Also shown are the hadronic chemical
freeze-out points resulting from statistical model analysis, from RHIC down to SIS energies.

Conditions reached in the cosmological expansion evolution, and closely approached at RHIC and
LHC energies, in collisions of heavy nuclei. Subsequent, recent developments in QCD Lattice the-
ory have overcome the technical limitation to the case of zero baryochemical potential [8, 9, 10],
with extrapolations of the deconfinement phase boundary, upward to about µB = 500MeV in the
(T,µB) plane, including hints of a critical point of QCD. This domain coincides with the energy
region of A+A collision study at CERN SPS energies, 5 <

√
s< 17GeV , which has created several
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Micro-bangs in A+A collisions at laboratory
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Physics:
  1) Parton distributions in nuclei
  2) Initial conditions of the collision
  3) a new state of matter – Quark-Gluon Plasma and its properties
  4) hadronization
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STAR 

Au+Au 7.7--200 GeV 
Polarized p+p up to 500 GeV

13

In addition to accelerating protons, the accelerator complex also 
accelerates lead ions.

Lead ions are produced from a highly purified lead sample heated 
to a temperature of about 500°C. The lead vapour is ionized 
by an electron current. Many different charge states are pro-
duced with a maximum around Pb29+. These ions are selected 
and accelerated to 4.2 MeV/u (energy per nucleon) before pass-
ing through a carbon foil, which strips most of them to Pb54+. 
The Pb54+ beam is accumulated, then accelerated to 72 MeV/u 
in the Low Energy Ion Ring (LEIR), which transfers them to the 
PS. The PS accelerates the beam to 5.9 GeV/u and sends it to the 
SPS after first passing it through a second foil where it is fully 
stripped to Pb82+. The SPS accelerates it to 177 GeV/u then sends 
it to the LHC, which accelerates it to 2.76 TeV/u.
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BRONIOWSKI, BOŻEK, AND RYBCZYŃSKI PHYSICAL REVIEW C 76, 054905 (2007)
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FIG. 1. (Color online) Snapshot of a typical gold-gold collision in the x-y plane, for b= 6 fm. Red and black circles indicate nucleons
from nuclei A and B, respectively, plotted with the size (3.2). The left picture shows all nucleons, the middle shows the wounded nucleons only,
and the right shows the centers of mass of pairs of nucleons undergoing binary collisions. The straight lines indicate the (twisted) principal axis
of the quadrupole moment, the blue dots show the center of mass of the system, and the outer circles denote the Woods-Saxon radius of gold,
R = 6.37 fm. The units on the x and y axes are femtometers.

The first part of the paper discusses the fixed-axes and
variable-axes harmonic moments and radial profiles obtained
numerically from the Glauber Monte Carlo studies in sev-
eral models: the conventional wounded-nucleon model [11],
a model admixing binary collisions to wounded nucleons
[12,13], a model with hot spots, and the hot-spot model
where the deposition of energy occurs with a given probability
distribution (Sec. III). The results are presented in Secs. IV
and V. The main result here is that the fixed-axes quadrupole
moments, ε, and their scaled standard deviation, "ε/ε, vary
significantly from model to model. The same holds to a
lesser extent for the variable-axes moments, ε∗. However,
the dependence of the scaled standard deviation "ε∗/ε∗

on the chosen Glauber-like model is weak, at most at the
level of 10%–15% for intermediate impact parameters. For
all considered models the values range from about 0.5 for
central collisions to about 0.3–0.4 for peripheral collisions. We
examine the dependence on the mass number, providing results
for gold-gold and copper-copper collisions. We also investigate
the effects of the assumed weighting power of the transverse
radius in the definition of the harmonic moments, finding that
the choice is not important for studies of fluctuations.

In Sec. VI we examine the role of the center-of-mass and
quadrupole-axes fluctuations on jet quenching. Except for very
central collisions, the effect of the increased eccentricity of
the opaque medium is canceled by the shift of its position and
axes rotation, leading to almost no change in the azimuthal
asymmetry of the jets leaving the interaction region.

In Sec. VII we argue that the variable-axes quantities are
dominated by sheer statistics and certain properties of variable-
axes distributions can be explained in an elementary way
through the use of the central limit theorem. In particular, in the
absence of correlations between the location of sources and for
central collisions we get the result of an appealing simplicity,
namely "ε∗/ε∗(b= 0) =

√
4/π − 1 ≃ 0.52, independent of

the number of sources in the assumed model, the mass number
of the colliding nuclei, or the collision energy. This result is
fulfilled to a very good accuracy in actual numerical studies,
where some correlations are present. For noncentral collisions

appropriate expansions are provided. We also analyze the
variable-axes profiles in this way. The effects of correlations
between the location of sources are discussed in Appendix D.

In Sec. VIII we propose another method of encoding
the information on the initial state, where each harmonic
(including the odd ones) is evaluated in its own eigenaxes.
The method can be used as a base for a smoothing procedure
in preparation of the initial conditions for event-by-event
hydrodynamic studies.

In Sec. IX we make several comments referring to the
collective flow. We note that the statistical analysis of the
variable-axes parameters ε∗ carries over to the analysis of
the variable-axes elliptic-flow coefficient, v∗

2 . For central
collisions (in the absence of correlations) we find "v∗

2/v
∗
2 (b=

0) =
√

4/π − 1 ≃ 0.52, independently of multiplicity, mass
number, or the collision energy. This value is in the ballpark
of the recent experimental data [9,10]. Moreover, under
the assumption of smoothness that most likely holds in
hydrodynamics, which allows for perturbation theory around
the azimuthally symmetric solution, one obtains the relation
v∗

4 ∼ v∗2
2 for the octupole flow coefficient. Consequently,

for the event-by-event fluctuations we find the prediction
"v∗

4/v
∗
4 = 2"v∗

2/v
∗
2 .

The appendices contain some more technical material,
including the derivations of the statistical formulas. A simple
one-dimensional toy model illustrating the essence of the
statistical intricacies is given in Appendix C.

II. NOTATION

In our study we use the standard Woods-Saxon nuclear
density profile for the nucleus of mass number A,

n(r) = c

1 + exp
(

r−R
a

) , (2.1)

where the constant c, given in Appendix B, is such that
the normalization

∫
4πr2dr n(r) = A is fulfilled. For the

054905-2
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Nucleon from 
nuclei A and B

Participant initial 
coordinates

Participant in 
center of mass 

frame after 
binary collision

✓ Fluctuation, significant in small system
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D″ðωÞ ¼
Z

tmax

t0
D″

GðtÞeiωtdt; ð7Þ

the strength of the dipole resonance of the system at excited
energy E ¼ ℏω can be obtained, i.e.,

dP
dE

¼ 2e2

3πℏc3E
jD″ðωÞj2; ð8Þ

where dP=dE can be interpreted as the nuclear photo-
absorption cross section. It can be normalized as
ðdP=dEÞnorm ¼ ðdP=dEÞΔE=

R∞
0 ðdP=dEÞdE, where ΔE

is the energy range of the GDR concerned. In realistic
calculations, we take the integral interval from 8 to 40MeV,
which is consistent with the energy region of the GDR.
The normalized dP=dE is calculated in the excitation-
energy region from 8 to 35 MeV, which includes almost all
the physically relevant GDR peaks. When displaying the
dP=dE spectrum, a smoothing parameter Γ ¼ 2 MeV was
used (our calculation shows that the GDR width almost
does not depend on Γ).
Results and discussion.—The GDR spectrum of 16O

obtained in the way described above is compared against
the experimental data [48] and first principles calculations
[49] shown in Fig. 1(a). Figure 1(b) shows the 16O dipole
oscillation in two decomposed directions versus time for one
event. The wave function of the 16O system at the ground
state is obtained at a binding energy of 7.82AMeV, which is
very close to the experimental binding energy: 7.98A MeV.
The resulting ground state consists of four α particles with a
tetrahedral configuration. The tetrahedral four-α configura-
tion in the 16O ground state is also supported by a new
ab initio calculation of by Epelbaum et al. [34] using chiral
nuclear effective field theory. In addition, a recent covariant
density functional theory calculation also shows regular
tetrahedral four-α configuration in the ground state of 16O
[28]. The long dashed red line represents the calculated GDR
of 16O by a merged Lorentz integral transform of a dipole
response function obtained with the coupled-cluster method

from first principles. The comparison with data confirms that
the tetrahedral four-α configuration in initialization is
reasonable and the procedure used to calculate GDRs is
reliable. Then, we apply the method to explore GDRs for
excited α cluster states.
For light stable nuclei, the α cluster structure is expected

around the threshold energy Ethr
nα ¼ nEα of the nα emission.

The Pauli principle plays a more and more important role
when the α cluster degrees of freedom become more
pronounced. Therefore, to quantitatively depict the energy
of α cluster states, the running parameter of cP, which
depends on the density, excitation energy, or temperature
of the system, is needed. Thus, the α clustering states with
different configurations around the threshold Ethr

nα are
obtained with 20 MeV Pauli potential strength, where α
clusters are weakly bound, less than 1 MeV per cluster, in
all systems considered.
For 12C, there are linear-chain and regular triangle

configurations. For 16O, we consider linear-chain, kitelike
[33], and square configurations. Different configurations of
α clustering give different mean-field characteristics, which
will essentially affect the collective motion of nucleons,
e.g., in GDRs. This speculation is verified by Fig. 2.
The GDR is anisotropic for α configurations shown in

Fig. 2, which originates from the fact that α clusters are
in a plane or in a linear chain in 8Be, 12C, and 16O. We
decompose the collective motion into two directions. One
direction is perpendicular to the plane or the line of the α
configurations, called the short axis, indicated by long
dashed red lines. The other direction is in the plane or
chain, and we take the longest axis of configuration as this
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FIG. 1 (color online). (a) Comparison of the GDR calculation
for 16O (solid blue line, scaled by the left Y axis) against
experimental data (nuclear photoabsorption cross section on
the oxygen target), Ref. [48] (empty triangles, scaled by the
right Y axis), and first principles calculation [49] (long dashed red
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excited direction (solid blue line) and the nonexcited direction
(short dashed black line).

10 20 30 40 500

(a) Be8

α
α

0

(c) C_triangle12

α α

α

10 20 30 40 50

(e) O_kite16

α α

α

α

γE

(b) C_chain12

α

α

α

(d) O_chain16

α
α
α
α

10 20 30 40 50

(f) O_square16

α α

α α

(MeV)

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

dP
/d

E
 (a

rb
. u

ni
ts

)

FIG. 2 (color online). 8Be, 12C, and 16O GDR spectra with
different cluster configurations. The corresponding α cluster
configuration in the present EQMD model calculation is drawn
in each panel, in which blue and red balls indicate protons and
neutrons, respectively. The dynamical dipole evolution of 8Be,
12C, and 16O with linear-chain configurations are shown in [50].
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Fig. 1. The definitions of the RP and PP coordinate systems.

Fig. 2. The definition of the EP coordinate system.

The orientation of the flow vector Q = {Qx,Qy} =
{∑i cos 2φi ,

∑
i sin 2φi}, where the sum runs over all parti-

cles in some momentum window, defines the second harmonic
event plane (see Fig. 2) with corresponding azimuth ΨEP,
Qx = Q cos 2ΨEP, Qy = Q sin 2ΨEP. Although we use Q in
this Letter, in practice one would use q = Q/

√
N in order to

minimize the effect of the multiplicity spread within a central-
ity bin [2]. For a given orientation of the participant plane, ΨPP,
anisotropic flow develops along this participant plane.

The orientation of the participant plane can be also charac-
terized by the eccentricity vector with coordinates

(1)ε = {εx, εy} =
{〈

σ 2
y − σ 2

x

σ 2
x + σ 2

y

〉

part
,

〈
2σxy

σ 2
x + σ 2

y

〉

part

}
,

where σ 2
x = ⟨x2⟩ − ⟨x⟩2, σ 2

y = ⟨y2⟩ − ⟨y⟩2, and σ 2
xy = ⟨xy⟩ −

⟨y⟩⟨x⟩, and the average is taken over the coordinates of the
participants in a given event [3–5]. The eccentricity vector di-
rection is given by ΨPP = atan 2(εy, εx), and its magnitude,

εpart =
√

ε2
x + ε2

y ≡ εPP, is called the participant eccentricity
(see Figs. 3, 4) in contrast with the reaction plane (or standard)
eccentricity εx ≡ εRP with its mean value defined to be

(2)⟨εx⟩ = ⟨εRP⟩ ≡ ε̄.

This mean value is approximately εopt, the optical eccentricity
determined by the optical Glauber model [6].

Fig. 3. Definition of εpart.

Fig. 4. Flow vector distribution in events with fixed ε.

3. Gaussian model for eccentricity fluctuations

In events with fixed ε, both in magnitude and orientation, the
flow vector on average points along ε, but with the magnitude
and orientation of the flow vector fluctuating due to finite mul-
tiplicity of particles used in its definition. As can be seen from
simulations using the MC Glauber model [3–5] in Fig. 5, the
distributions in εx and εy are well approximated by a Gaussian
form with widths approximately equal in the two directions.
There exists some deviation from a Gaussian form in periph-
eral collisions, but even there the deviations are small, so we
proceed with the Gaussian ansatz. We denote the equal widths
in εx and εy by σε . The distribution in the magnitude of the ec-
centricity, εpart, can be obtained by integration over angle of the
vector ε as a two-dimensional Gaussian (see, for example, the
derivation in [7]), and is given by

dn

dεpart
= εpart

σ 2
ε

I0

(
εpart⟨εRP⟩

σ 2
ε

)
exp

(
−

ε2
part + ⟨εRP⟩2

2σ 2
ε

)

(3)≡ BG
(
εpart; ⟨εRP⟩,σε

)
,

where we have introduced a short hand notation BG(x; x̄,σ )

for the “Bessel–Gaussian” distribution with one variable argu-
ment and two constant parameters (see Fig. 6). Note that in
BG(εpart; ⟨εRP⟩,σε), εpart is an eccentricity as given in PP but
⟨εRP⟩ and σε describe the 2D Gaussian distribution in the RP-
system. The distribution is normalized to unity. For later use we
provide a few moments of the distribution BG(x; x̄,σ ), where
x is a generic variable (not the x-axis):

⟨x⟩ = 1
2σ

exp
(

− x̄2

4σ 2

)√
π

2

[(
2σ 2 + x̄2)I0

(
x̄2

4σ 2

)

(4)+ x̄2I1

(
x̄2

4σ 2

)]
,

S.A. Voloshin et al. / Physics Letters B 659 (2008) 537–541 
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that the two nucleons interact is a Gaussian in their relative
impact parameter, of the width controlled by σinelNN.
The wounded nucleons and binary collisions are jointly
referred to as sources. The outcome of the Monte Carlo
simulation is a distribution of locations of sources in the
transverse plane in each event, fð~xÞ ¼

P
jδð~x − ~xjÞ. In

actual applications the sources are smeared. This physical
effect is necessary in preparing the initial condition for
hydrodynamics.

A single event of a central (for vanishing impact
parameter) 12C-208Pb collision is shown in Fig. 2. Here
we have used the clustered 12C BEC distribution and aligned
the transverse and the cluster planes (the carbon hits the lead
“flat”). The shown collision led to 66 wounded nucleons and
93 binary collisions. Note the typical “warped” structure
following from the stochastic nature of the process, with the
underlying three clusters structure visible.
The eccentricity coefficients of the fireball have two

sources. One comes from the average shape (for instance, in
noncentral A-A collisions the overlapped almond-shaped
region produces ϵ2, or in the present case the triangular
cluster shape of 12C generates triangularity), but, in
addition, there is a component from fluctuating positions
of the finite number of N sources. This fluctuating
component [39–43] is suppressed with N. The intrinsic
density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned
principal axes: fintrn ð~xÞ ¼ hfðRð−Φn Þ~xÞi. Here the brackets
indicate averaging over events and Rð−Φn Þ denotes an
inverse rotation by the principal-axis angle in each event.
The result of this procedure for generating the intrinsic
fireball densities of rank n ¼ 3 is shown in the middle
panels of Fig. 3 for high-multiplicity collisions (with more
than 70 wounded nucleons). In these simulations the
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FIG. 2. (Color online) (color online). Snapshot of a single
central 12C-208Pb collision, displaying the distribution of sources
in the transverse plane, BEC case, Nw ¼ 66, Nbin ¼ 93. In this
simulation the transverse and cluster planes were aligned.
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FIG. 3. (Color online) (color online). Glauber Monte Carlo simulations with GLISSANDO for the 12C-208Pb collisions at the SPS
energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17 GeV. The top panels correspond to the clustered BEC case, while the bottom panels display the unclustered case.
The left panels show the intrinsic densities in the 12C nucleus, the middle panels give the corresponding rank n ¼ 3 intrinsic densities
of sources in the fireball in the transverse plane for collisions with a high number of wounded nucleons, Nw ≥ 70, and the right panels
show the event-by-event statistical properties of the fireball (average ellipticity, triangularity, and their scaled standard deviations) as
functions of the number of wounded nucleons. See the text for details.
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that the two nucleons interact is a Gaussian in their relative
impact parameter, of the width controlled by σinelNN.
The wounded nucleons and binary collisions are jointly
referred to as sources. The outcome of the Monte Carlo
simulation is a distribution of locations of sources in the
transverse plane in each event, fð~xÞ ¼

P
jδð~x − ~xjÞ. In

actual applications the sources are smeared. This physical
effect is necessary in preparing the initial condition for
hydrodynamics.

A single event of a central (for vanishing impact
parameter) 12C-208Pb collision is shown in Fig. 2. Here
we have used the clustered 12C BEC distribution and aligned
the transverse and the cluster planes (the carbon hits the lead
“flat”). The shown collision led to 66 wounded nucleons and
93 binary collisions. Note the typical “warped” structure
following from the stochastic nature of the process, with the
underlying three clusters structure visible.
The eccentricity coefficients of the fireball have two

sources. One comes from the average shape (for instance, in
noncentral A-A collisions the overlapped almond-shaped
region produces ϵ2, or in the present case the triangular
cluster shape of 12C generates triangularity), but, in
addition, there is a component from fluctuating positions
of the finite number of N sources. This fluctuating
component [39–43] is suppressed with N. The intrinsic
density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned
principal axes: fintrn ð~xÞ ¼ hfðRð−Φn Þ~xÞi. Here the brackets
indicate averaging over events and Rð−Φn Þ denotes an
inverse rotation by the principal-axis angle in each event.
The result of this procedure for generating the intrinsic
fireball densities of rank n ¼ 3 is shown in the middle
panels of Fig. 3 for high-multiplicity collisions (with more
than 70 wounded nucleons). In these simulations the
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FIG. 2. (Color online) (color online). Snapshot of a single
central 12C-208Pb collision, displaying the distribution of sources
in the transverse plane, BEC case, Nw ¼ 66, Nbin ¼ 93. In this
simulation the transverse and cluster planes were aligned.
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energy
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p ¼ 17 GeV. The top panels correspond to the clustered BEC case, while the bottom panels display the unclustered case.
The left panels show the intrinsic densities in the 12C nucleus, the middle panels give the corresponding rank n ¼ 3 intrinsic densities
of sources in the fireball in the transverse plane for collisions with a high number of wounded nucleons, Nw ≥ 70, and the right panels
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functions of the number of wounded nucleons. See the text for details.
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moments are the scaled standard deviation,

σ (ϵn)
⟨ϵn⟩

≃ σ (vn)
⟨vn⟩

, (6)

and the ratio of the four-particle and two-particle cumulant
moments,

ϵn{4}
ϵn{2}

≃ vn{4}
vn{2}

. (7)

Thus measurements of the above combinations of moments
of vn provide information on analogous quantities for the
eccentricities. Experimentally, one can access even moments
of vn, and the ratio in Eq. (6) must be estimated from vn{2}
and vn{4} or from the reconstructed vn distribution.

Predictions based on Eq. (6) have been reported in Ref. [1]
(Fig. 3, top right, in that work), where σ (ϵn)/⟨ϵn⟩ increases
for ellipticity and decreases for triangularity with Nw. This
behavior reflects the interplay of the intrinsic geometry and
statistical fluctuations. In this paper, following closely the
analysis in Ref. [2], we apply relation (7). The results of
GLISSANDO simulations are shown in Fig. 9. We note that for
high-multiplicity collisions the ratio ϵn{4}/ϵn{2} significantly
increases for triangularity and decreases for ellipticity. The
geometric triangularity increases for collisions with a larger
number of participants, corresponding to high-multiplicity
events. On the other hand, the eccentricity due to fluctuations
of independent sources decreases with Nw, hence the opposite
behavior.

We note that the change of behavior (stronger monotonicity)
starts at Nw, corresponding to a centrality of 10%; thus it occurs
in the region easily accessible to experimental analyses. We
also see that the behavior for clustered 12C (thick lines in
Fig. 9) is completely different from the case of the uniform
structure (thin lines).

The behavior shown in Fig. 9 is the key result of this work.
It offers a signature sensitive to the intrinsic deformation that
is straightforward to measure in ultrarelativistic heavy-ion
collisions with standard techniques devoted to analysis of
harmonic flow.
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FIG. 10. (Color online) Comparison of vn{4}/vn{2} for the SPS,
RHIC, and LHC cases. BEC case. Vertical lines indicate the values
of Nw corresponding to centralities of 10% for the three collision
energies. Parameters are listed in Table II.

One could ask at this point why we need to resort to Eq. (7),
rather than evaluating vn{4} directly from the event-by-event
hydrodynamic calculations. The reason is twofold. First, the
statistics possible to achieve in such studies is sufficient for
the analysis of two-particle cumulants but not four-particle
cumulants. Second, and more importantly, the application of
Eq. (7) frees us from sensitivity to details of the dynamical
theory, which we do not know exactly. This way the predictions
for the ratios of the cumulant moments are more general and
model independent.

V. FURTHER RESULTS

A. Dependence on the collision energy

In Fig. 10 we show the dependence of our predictions on
the collision energy, according to the values in Table II. We
note that the qualitative predictions do not change with the
collision energy, as the three sets of curves are similar, in
particular, when we take into account the fact that the values
of centrality corresponding to a given Nw depend on the energy
via the value of σ inel

NN .

B. Forward and backward rapidity

We may also ask the question how much the predictions
depend on the rapidity window used in the experiment. This
is of practical significance, as in fixed-target experiments the
detectors cover rapidity away from the center. For the purpose
of a simple estimate, we use the model in Refs. [69,70], where
the initial density of the fireball in the space-time rapidity η∥
and the transverse plane coordinates (x,y) is given by the form

F (η∥,x,y) = (1 − a)[ρ+(x,y)f+(η∥) + ρ− (x,y)f− (η∥)]

+aρbin(x,y)[f+(η∥) + f− (η∥)], (8)

where ρ± (x,y) is the density from the forward- and backward-
going wounded nucleons, and ρbin(x,y) is the binary collision
density. The rapidity profile functions f+(η∥) and f− (η∥) are
given explicitly in Ref. [70].
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moments are the scaled standard deviation,

σ (ϵn)
⟨ϵn⟩

≃ σ (vn)
⟨vn⟩

, (6)

and the ratio of the four-particle and two-particle cumulant
moments,

ϵn{4}
ϵn{2}

≃ vn{4}
vn{2}

. (7)

Thus measurements of the above combinations of moments
of vn provide information on analogous quantities for the
eccentricities. Experimentally, one can access even moments
of vn, and the ratio in Eq. (6) must be estimated from vn{2}
and vn{4} or from the reconstructed vn distribution.

Predictions based on Eq. (6) have been reported in Ref. [1]
(Fig. 3, top right, in that work), where σ (ϵn)/⟨ϵn⟩ increases
for ellipticity and decreases for triangularity with Nw. This
behavior reflects the interplay of the intrinsic geometry and
statistical fluctuations. In this paper, following closely the
analysis in Ref. [2], we apply relation (7). The results of
GLISSANDO simulations are shown in Fig. 9. We note that for
high-multiplicity collisions the ratio ϵn{4}/ϵn{2} significantly
increases for triangularity and decreases for ellipticity. The
geometric triangularity increases for collisions with a larger
number of participants, corresponding to high-multiplicity
events. On the other hand, the eccentricity due to fluctuations
of independent sources decreases with Nw, hence the opposite
behavior.

We note that the change of behavior (stronger monotonicity)
starts at Nw, corresponding to a centrality of 10%; thus it occurs
in the region easily accessible to experimental analyses. We
also see that the behavior for clustered 12C (thick lines in
Fig. 9) is completely different from the case of the uniform
structure (thin lines).

The behavior shown in Fig. 9 is the key result of this work.
It offers a signature sensitive to the intrinsic deformation that
is straightforward to measure in ultrarelativistic heavy-ion
collisions with standard techniques devoted to analysis of
harmonic flow.
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One could ask at this point why we need to resort to Eq. (7),
rather than evaluating vn{4} directly from the event-by-event
hydrodynamic calculations. The reason is twofold. First, the
statistics possible to achieve in such studies is sufficient for
the analysis of two-particle cumulants but not four-particle
cumulants. Second, and more importantly, the application of
Eq. (7) frees us from sensitivity to details of the dynamical
theory, which we do not know exactly. This way the predictions
for the ratios of the cumulant moments are more general and
model independent.

V. FURTHER RESULTS

A. Dependence on the collision energy

In Fig. 10 we show the dependence of our predictions on
the collision energy, according to the values in Table II. We
note that the qualitative predictions do not change with the
collision energy, as the three sets of curves are similar, in
particular, when we take into account the fact that the values
of centrality corresponding to a given Nw depend on the energy
via the value of σ inel

NN .

B. Forward and backward rapidity

We may also ask the question how much the predictions
depend on the rapidity window used in the experiment. This
is of practical significance, as in fixed-target experiments the
detectors cover rapidity away from the center. For the purpose
of a simple estimate, we use the model in Refs. [69,70], where
the initial density of the fireball in the space-time rapidity η∥
and the transverse plane coordinates (x,y) is given by the form

F (η∥,x,y) = (1 − a)[ρ+(x,y)f+(η∥) + ρ− (x,y)f− (η∥)]

+aρbin(x,y)[f+(η∥) + f− (η∥)], (8)

where ρ± (x,y) is the density from the forward- and backward-
going wounded nucleons, and ρbin(x,y) is the binary collision
density. The rapidity profile functions f+(η∥) and f− (η∥) are
given explicitly in Ref. [70].
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FIG. 4. (Color online) Comparison of the fireball eccentricity
coefficients from the two-particle cumulants for the clustered dis-
tribution and for the uniform distribution. GLISSANDO simulations,
BEC case, RHIC. Vertical lines indicate the total number of wounded
nucleons corresponding to centralities 10%, 1%, and 0.1%. The
orientation-multiplicity correlation is clearly shown for the clustered
case.

geometric ellipticity in the case where the cluster plane is not
parallel to the transverse plane, which is the generic case due
to randomness of the orientation.

The second cause for eccentricity coefficients comes from
fluctuations due to the finite number of nucleons [7,47– 50].
The effect of fluctuations washes away, to some extent, the
geometric component, hence a careful examination of the
results presented in Sec. IV B is necessary to discriminate
the two origins.

In collisions of asymmetric nuclei at a finite impact param-
eter b, small values of odd Fourier components can appear in
the azimuthal dependence of the fireball density with respect
to the reaction plane (such an effect is present, for instance,
in Cu-Au collisions). In Fig. 5 we show the triangularity of
the initial fireball for C-Au and Cu-Au collisions with respect
to the reaction plane calculated in the optical Glauber model,
an approximate scheme where one first averages the densities
and then computes the nuclear thickness function [51]. For
intermediate values of b the triangularity is nonzero, even
without any contribution from fluctuations or the α clustering.
However, the obtained value of ϵ3 is an order of magnitude
smaller than the one calculated event by event with respect to
the third-order event plane (Fig. 4). Moreover, the most central
collisions that we discuss in the following correspond to small
impact parameters (for centralities c = 10%, 1%, and 0.1%
the average values of bare 2.4, 1.5, and 1.2 fm, respectively).
Hence the average geometric ϵ3 in the reaction plane is even
smaller. While the above effect is automatically included in
our simulation, it does not play a role in the interpretation of
the results.

As explained in Ref. [1], there is a specific correlation
among centrality, triangularity, and ellipticity, induced by the
intrinsic orientation of 12C. When the transverse and the cluster
planes are aligned, the 12C nucleus hits the large nucleus
flat-on and thus creates the most damage, i.e., produces the
largest number of sources (cf. left side of Fig. 6). At the

Cu Au
C Au

optical Glauber model

0 2 4 6 8
0

0.01

0.02

b fm

Ε 3

FIG. 5. (Color online) Triangularity of the fireball formed in C-
Au and Cu-Au collisions. The density is calculated in the optical
Glauber model, and the the triangularity is defined with respect to the
reaction plane.

same time, in this flat-on orientation we have, on average,
the highest triangularity and the lowest ellipticity, which here
comes entirely from fluctuations.

In the other extreme case the cluster plane is perpendicular
to the transverse plane (side-wise configuration; cf. right side
of Fig. 6). Then we find the opposite behavior: low multiplicity,
as the cross section is smaller, small triangularity, and large
ellipticity, which now obtains a sizable contribution from the
elongated shape of the fireball.

Of course, in actual collisions the orientation is random
and we have a situation between the two limiting cases de-
scribed above, yet the phenomenon of the specific orientation-
multiplicity correlations is clearly seen (cf. Fig. 3, top right,
in Ref. [1] or Fig. 4 here). In particular, in Fig. 4 we show,
by comparing the simulations with clustered and uniform
12C, that the geometry increases the triangularity at high
values of the number of wounded nucleons, Nw (preferentially
flat-on collisions), and raises ellipticity at lower values of Nw

(sidewise collisions).
Event-by-event studies allow for obtaining event-by-event

distributions of the physical quantities. In the sections below
we need the so-called two-particle and four-particle cumulant
moments [52] of the eccentricities, defined as

ϵn{2} =
〈
ϵ2

2

〉1/2
,

(3)
ϵn{4} = 2

(〈
ϵ2
n

〉2 −
〈
ϵ4
n

〉)1/4
.

For a finite number of sources (wounded nucleons), even
without geometric deformation, one has just from fluc-
tuations ϵn{m} ̸= 0 for m ! 4, with ϵn{m} decreasing as
1/N

1−1/m
w [50,53].

(a) (b)

FIG. 6. Flat-on (left) and sidewise (right) orientations of 12C with
respect to the reaction plane.
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Figure 3
The v2 multiparticle cumulants as a function of charged-particle multiplicity for (a) p + p , (b) p+Pb, and (c) Pb+Pb collisions at the
LHC (71).

M ≪ N (as in the dijet case), or from M ≈N , that is, a feature of the bulk. Most nonhydrodynamic
explanations for the observations in small systems invoking finite-size momentum domains predict
the former case, whereas an overall flowing medium implies the latter case. Multiparticle cumulants
utilize sets of 2, 4, 6, . . . , n particles that sequentially subtract away correlations among only n −2
particles, with an extension to all N particles using the Lee–Yang zeros method (63, 64). These
measurements have been particularly powerful because in the small-variance Gaussian limit the
two-particle and four-particle results can be written as v2{2} =

√
v2

2 + σ 2 and v2{4} ≈
√

v2
2 −σ 2.

They therefore allow extraction of both the event-averaged v2 and the event-by-event variance
σ 2 (65). This has established in A + A collisions at RHIC and the LHC a direct quantitative
connection between the event-by-event variation in the initial geometry and the flow fluctuations
(66).

Figure 3 shows v2 multiparticle cumulants as measured in p + p , p+Pb, and Pb+Pb collisions
at the LHC (67–71). The splitting of v2{2} > v2{4}, as related to flow fluctuations, is also observed
in p+Pb collisions, yet disappears in the p + p case. In 2016, RHIC had a special run of d+Au
collisions over a range of energies (200, 62.4, 39, and 19.6 GeV) to address how low in energy
these features persist. The results from the d+Au collisions at 200 GeV on the two-, four-, and
six-particle cumulants also indicate that the correlations are at the multiparticle level (72).

We note that nonzero multiparticle cumulants are not unique to a hydrodynamic description
(e.g., 62, 73). Imagine a flock of birds in flight that have N-body correlations, where

order can be the effect of a top-down centralized control mechanism (for example, due to the presence
of one or more leaders), or it can be a bottom-up self-organized feature emerging from local behavioral
rules. The prominent difference between the centralized and the self-organized paradigm is not order,
but response. (74, p. 11865)

Thus, the key connection is the relation of cumulants to the response to initial geometry, rather
than the mere real-valued3 v2, v4, v6, and so forth.

3The vn ’s extracted using cumulants can assume complex values when large fluctuations and/or nonflow effects dominate the
flow signal.
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Figure 4
(a) Calculations of the initial energy density (top) in p+Au, d+Au, and 3He+Au collisions at RHIC and the resulting hydrodynamic
evolution utilizing Monte Carlo Glauber initial conditions (bottom) (77). (b) Comparison of hydrodynamic calculations (77) to data from
p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV (80).

In summary, the multiparticle measurements in A+A, p+Pb, and d+Au collisions at RHIC and
the LHC yield strong evidence for N-body correlations, providing a connection to the fluctuating
initial conditions. However, in the lower-multiplicity cases of p + p at the LHC and p+Au and
lower-energy d+Au at RHIC, the cumulants do not follow the small variance expectation, which
may not be surprising as the fluctuations and nonflow effects are larger. More research will be
needed (e.g., 75) to resolve these questions.

4.2.2. Manipulating the geometry. The initial small system flow measurements at RHIC were
made in d+Au (61) rather than p+Au collisions, due to accelerator constraints. However, it
was noted that in a d+Au central collision, the projectile neutron and proton from the deuteron
deposit energy in two hot spots, thus yielding a very different initial condition than the single hot
spot in a p+Au collision (76). This key observation (77) led to a systematic program of injecting
different initial-state asymmetries through p , d , and 3He projectiles incident on Au nuclei at
RHIC (78–80). Figure 4a shows that the various projectiles result in initial conditions that are
dominantly circular, elliptical, and triangular for p, d, and 3He projectiles, respectively. Figure 4b
shows theoretical predictions from the hydrodynamic standard model (77) that are in excellent
agreement with the subsequent experimental measurements of v2. In addition, the 3He projectile
was chosen to enhance triangular initial geometries, and the triangular flow v3 has also been
measured and is in agreement with theoretical predictions (79).

The agreement with data requires a full modeling of both the initial conditions and the sub-
sequent evolution. In the case of d+Au and 3He+Au, the initial geometry is dominated by the
location of the two or three nucleons at the point of impact. In contrast, for p+Au, p+Pb, and in
particular p + p collisions, the initial geometry depends critically on the modeling of subnucleonic
degrees of freedom (discussed in Section 5.2). The simultaneous description of the three engi-
neered geometries at RHIC yields compelling evidence that the dominant correlation source can
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Fig. 3. Comparison of v2 vs. pT in p+Au and d+Au collisions at √sNN = 200 GeVfor event classes leading to ⟨dNch/dη⟩ ∼ 10. Panels
(a), (b) and (c) show comparisons of the v2 values for the unsubtracted, non-flow subtraction with method (i) and non-flow-subtraction
with method (ii) respectively (see text).

3. Results

The template fitting method was employed to measure the integral v2 values as a function of ⟨Nch⟩
in d+Au collisions from 19.6 to 200 GeV and p+Au at 200 GeV. The values for both v2 and ⟨dNch/dη⟩
were evaluated for 0.2 GeV/c< pT < 3.0 GeV/c and |η| < 0.9 for each data set. Fig. 2 shows similar
magnitudes and trends for v2 values extracted at similar ⟨dNch/dη⟩ irrespective of beam energy and system.
This observation is consistent with the expected trend for the dominance of final-state viscous attenuation
at low ⟨dNch/dη⟩ [22]. Note that the eccentricity difference of ∼ 2, obtained for p+Au and d+Au with the
nucleon Glauber model [23] , is substantially less than the corresponding difference obtained from initial-
state geometric models which take account of the internal structure of the nucleons [22, 24]. In the latter
models, the beam energy dependence of the initial-state eccentricity for d+Au collisions is rather weak as
well.

To further compare v2 in p+Au and d+Au collisions, event classes were selected so as to give the
same ⟨dNch/dη⟩ ∼ 10 for both systems. In addition, two different methods of non-flow subtraction were
employed; (i) LM subtraction scaled by near-side jet yield [25–27]; and (ii)template fitting. The resulting
v2 values are shown as a function of pT in Fig. 3. The subtracted v2 shown on panels (b) and (c) are smaller
than the un-subtracted v2 shown in panel (a), it indicates there are substantial non-flow contributions for
⟨dNch/dη⟩ ∼ 10. However, they do not indicate a sizable difference in the magnitudes for the d+Au and
p+Au results. This observation is in line with the small system-dependent eccentricity difference alluded to
earlier.

Results from four-particle angular correlation measurements in d+Au collisions, are shown in the Fig. 4.
The efficiency corrected multiplicity and c2{4} were similarly measured using charged hadrons within
|η| <0.9 in the TPC, and for 0.2 GeV/c < pT < 3.0 GeV/c. For high multiplicity events, a negative c2{4} is
observed for d+Au collisions at 62.4 and 200 GeV, albeit with sizable statistical uncertainties. The negative
c2{4} values are consistent with the expectation for anisotropic flow in the most central d+Au collisions at
62.4 and 200 GeV.

4. Summary

In this proceeding, we have presented two- and four-particle azimuthal angle correlation measurements
for p+Au and d+Au collisions at different collision energies, as a function of pT and mean ⟨dNch/dη⟩. The
integral v2 (0.2 GeV/c < pT < 3.0 GeV/c) extracted with a template fitting procedure to account for non-
flow effects, shows a common ⟨dNch/dη⟩ dependent trend, irrespective of colliding species and the beam

S. Huang / Nuclear Physics A 982 (2019) 475–478 477

S. Huang, Nuclear Physics A 982 (2019) 475
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FIG. 15. (Color online) The pa
T dependence of v1 extracted using

the factorization relations Eqs. (13) and (14) in three reference pb
T

ranges for events with N rec
ch ! 220. The error bars and shaded boxes

represent the statistical and systematic uncertainties, respectively.

D. Comparison of vn results between high-multiplicity p + Pb
and peripheral Pb + Pb collisions

In the highest multiplicity p + Pb collisions, the charged-
particle multiplicity, N rec

ch , can reach more than 350 in |η| <
2.5 and EPb

T close to 300 GeV on the Pb-fragmentation side.
This activity is comparable to Pb + Pb collisions at

√
sNN =

2.76 TeV in the 45%–50% centrality interval, where the long-
range correlation is known to be dominated by collective flow.
Hence, a comparison of the vn coefficients in similar event
activity for the two collision systems can improve our current
understanding of the origin of the long-range correlations.

The left column of Fig. 16 compares the vn values from
p + Pb collisions with 220 " N rec

ch < 260 to the vn values
for Pb + Pb collisions in the 55%–60% centrality interval
from Ref. [9]. These two event classes are chosen to have
similar efficiency-corrected multiplicity of charged particles
with pT > 0.5 GeV and |η| < 2.5, characterized by its average
value (⟨Nch⟩) and its standard deviation (σ ): ⟨Nch⟩ ± σ ≈
259 ± 13 for p + Pb collisions and ⟨Nch⟩ ± σ ≈ 241 ± 43 for
Pb + Pb collisions.
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FIG. 16. (Color online) The coefficients v2 (top row), v3 (middle row), and v4 (bottom row) as functions of pT compared between p + Pb
collisions with 220 " N rec

ch < 260 in this analysis and Pb + Pb collisions in 55%–60% centrality from Ref. [9]. The left column shows the
original data with their statistical (error bars) and systematic uncertainties (shaded boxes). In the right column, the same Pb + Pb data are
rescaled horizontally by a constant factor of 1.25, and the v2 and v4 are also downscaled by an empirical factor of 0.66 to match the p + Pb
data.
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model takes account of the finite size of the nucleon, the
wounding profile of the nucleon, the distribution of quarks
inside the nucleon, and quark cross sections that reproduce
the nucleon-nucleon (NN) inelastic cross section atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV; all are constrained by experimental
measurements. A systematic uncertainty of 2%–5% was
estimated for the eccentricities from variations of the model
parameters.
The vnn coefficients were obtained from the correlation

function as

vnn ¼
P

ΔϕCrðΔϕ;ΔηÞcosðnΔϕÞP
ΔϕCrðΔϕ;ΔηÞ

ð7Þ

and then used to extract vn for n > 1,

vnnðpa
T; p

b
TÞ ¼ vnðpa

TÞvnðpb
TÞ; ð8Þ

and the vfluc1 component of v1

v11ðpa
T; p

b
TÞ ¼ vfluc1 ðpa

TÞvfluc1 ðpb
TÞ − Kpa

Tp
b
T; ð9Þ

whereK ∝ 1=ðhNchihpT
2iÞ takes account of the long-range

nonflow correlations induced by global momentum con-
servation [21,22,61]. A simultaneous fit of v11ðpb

TÞ for
several selections of pa

T [cf. Eq. (9)] was used to facilitate
the extraction of vfluc1 [61].
The systematic uncertainties associated with the vn

extractions were estimated through studies of the influence

of the choice of the cuts for z vertex position, track
selection, efficiency correction, Δη, and the fitting pro-
cedure. The uncertainty associated with Δη dominates for
the d þ Au and p þ Au systems. The respective uncer-
tainties, ranging from 2% to 10%, were added in quadrature
to obtain an overall systematic uncertainty for the respec-
tive measurements.
The extracted values of vfluc1 ðpTÞ, v2ðpTÞ, and v3ðpTÞ for

the collision systems are compared in Fig. 2 for different
values of hNchi. Figures 2(a)–2(c) indicate similar vfluc1 ðpTÞ
magnitudes for the systems specified at each hNchi, as well
as the characteristic pattern of a change from negative
vfluc1 ðpTÞ at low pT to positive vfluc1 ðpTÞ for pT ≳ 1 GeV=c.
This pattern confirms the predicted trends for dipolar flow
[17,18,21,61] and further indicates that, for the selected
values of hNchi, vfluc1 ðpTÞ is essentially independent of
collision system. Figures 2(d)–2(f) show similar system-
independent patterns for v3ðpTÞ, but with magnitudes and
trends that differ from those for vfluc1 ðpTÞ. The system
independence of vfluc1 ðpTÞ and v3ðpTÞ for the indicated
hNchi values suggests that the fluctuations-driven initial-
state eccentricities ε1 and ε3, and the subsequent final-state
interactions, are similar for the indicated collision systems.
The v2ðpTÞ values shown in Figs. 2(g)–2(i) contrasts

with those for vfluc1 ðpTÞ and v3ðpTÞ. That is, the trends for a
given hNchi are independent of the collision system, but the
magnitudes are not system independent, albeit with
differences that grow with hNchi. The system-dependent
differences, apparent for hNchi ¼ 140 and 70 [Figs. 2(g)

FIG. 2. vfluc1 (a–c), v2 (g–i), v3 (d–f) and v2=ε2 (j–l) vs pT for several hNchi selections. Results are compared for U þ U, Au þ Au,
Cu þ Au, and Cu þ Cu for hNchi ¼ 140, and hNchi ¼ 70 and for U þ U, Au þ Au, Cu þ Au, Cu þ Cu, d þ Au, and p þ Au for
hNchi ¼ 21 % 3. For the latter, the p þ Au and d þ Au data points are shifted by 0.1 and −0.1 GeV=c, respectively, to aid clarity.

PHYSICAL REVIEW LETTERS 122, 172301 (2019)

172301-5

J. Adam, et al. STAR, Phys. Rev. Lett. 122, 172301 (2019) 
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Figure 6. Measurements of the nuclear modification factor for an inclusive centrality class for
both PbPb and pPb collisions. The RpA values are formed using the previously published CMS
pPb data [13] and the pp reference spectrum described in this paper. Please refer to the main text
about the exact procedure followed. The green and yellow boxes show the systematic uncertainties
for RpA and RAA, respectively, while the TpA, TAA, and pp luminosity uncertainties are shown as
boxes at low pT around unity.

to 400GeV. As collisions become more peripheral, a weakening of both the magnitude and

pT dependence of this suppression is observed. Comparisons of the measured RAA values

to the 2.76TeV results reveal similar pT dependence and similar suppression. Predictions

of the high-pT RAA coming from the scetG, Hybrid, and v-usphydro+BBMG models

are found to approximately reproduce the present data. In central collisions, the cujet

3.0 model and a model parametrizing the departure of the medium transport coefficient, q̂,

from an ideal estimate, both predict RAA suppressions that are slightly larger than seen in

data. A model allowing q̂ to vary is able to predict the data at high pT, but expects a larger

suppression around 10GeV. The nuclear modification factor in pPb collisions has been re-

computed switching from an interpolation-based reference to the newly measured pp data

at
√
s = 5.02TeV. In the pPb system, in contrast to the PbPb system, no suppression is

observed in the 2–10GeV region. A weak momentum dependence is seen for pT > 10GeV

in the pPb system, leading to a moderate excess above unity at high pT. The pPb and

PbPb nuclear modification factors presented in this paper, covering pT ranges up to 120 and

400GeV, respectively, provide stringent constraints on cold and hot nuclear matter effects.

– 18 –
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Shengli Huang, et al., arXiv:1904.10415v1

3

Figure 2 shows the vn{PP} as a function of �Nch� in
four symmetric and three asymmetric small systems. For
symmetric systems, the v2{PP} values increase and then
decrease with increasing �Nch�, and the peak positions
in �Nch� also increase slightly for larger systems. This
behavior has been observed in larger systems [20, 34–
37] and is consistent with the expectation that the "2
has a large contribution related to the almond shape of
the overlap region [37]. The v3{PP} values for di↵erent
symmetric systems tend to follow a common increasing
trend as a function of �Nch�. Similar observation has
been made in Cu+Cu, Au+Au and U+U collisions at
RHIC [37], and in p+Pb and peripheral Pb+Pb collisions
at the LHC [38, 39]. Based on an independent source pic-
ture and a simple conformal scaling argument [40], this
scaling behavior is expected since "3 is driven by ran-
dom fluctuations of the positions of participating nucle-
ons. Over the measured �Nch� range, the relative increase
for v3 is significantly larger than that for v2, which can
be explained by a larger viscous damping for v3 than
v2 [41–44].
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FIG. 2. The v2{PP} (left) and v3{PP} (right) as a func-
tion of �Nch� in four symmetric and three asymmetric small
collision systems.

Figure 2 also shows that the v2{PP} values from asym-
metric systems follow di↵erent trends: the v2{PP} in
d�4He+Au increase with �Nch�, while it is relatively
constant in p+Au. The v3{PP} values show a simi-
lar �Nch� dependence as symmetric systems, except for
d+Au which deviates from the common trend at large�Nch�. Therefore, in a final-state driven model, we ex-
pected a clear di↵erence between d�4He+Au and A+A
for v2, but relatively similar behavior for v3.

Figure 3 shows the same results for vn{2PC, sub}. The
overall trends are similar to vn{PP} in Fig. 2. The larger
values of vn{2PC, sub} are possibly due to contributions
from initial momentum anisotropy that may survive to
the final state in small systems, as well as possible dy-
namical flow fluctuations generated in the final-state in-
teractions [31], both of which are uncorrelated with the
PP.
Since a geometry response picture is absent for pure

initial momentum anisotropy models, several behaviors
of v2 discussed in Figs. 2 and 3 are not naturally ex-
pected, including the �Nch� dependence and the dif-
ferences between asymmetric and symmetric systems.

Therefore, measurements of centrality dependence of v2
and v3 and comparison with large A+A systems at sim-
ilar �Nch� can provide strong constraints on whether the
observed anisotropy is dominated by initial- or final-state
e↵ects.
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FIG. 3. The v2{2PC, sub} (left) and v3{2PC, sub} (right) as
a function of �Nch� in four symmetric and three asymmetric
small collision systems.

In a recent yellow report for the future LHC heavy-ion
physics program, the possibility for smaller A+A colli-
sions is discussed [18]. This include a possible 16O+16O
run at

√
sNN = 2.76− 7 TeV in 20221, and other light-ion

species such as Ar+Ar beyond 2028. The main argu-
ment for O+O run at the LHC is that it allows a better
control of Npart, "n and hard-scattering rate via number
of nucleon-nucleon collisions Ncoll [18]. An O+O run at
RHIC right after BES-II would provide an unprecedented
and timely comparison of the same small system at very
di↵erent collision energies (0.2 TeV vs. 2.76–7 TeV). This
“RHIC-LHC energy scan” provides a unique opportunity
to study systems with nearly identical nucleon geome-
try but very di↵erent subnucleon fluctuations and parti-
cle production mechanism with di↵erent saturation scale
and mini-jet productions in the initial state. The large
lever-arm in collision energy should provide new insights
on the onset behavior of collectivity, jet quenching, or
any other final-state e↵ects in small systems: any model
has to describe results at both energies, which naturally
leads to better understandings of results at each energy.
The top panels of Fig. 4 compares the AMPT model

prediction of v2{PP} and v3{PP} as a function of Npart

in O+O collisions at 0.2 and 2.76 TeV. The vn{PP} val-
ues are larger at 2.76 TeV, but the shape of the Npart

dependence is rather similar between the two energies.
The bottom panels of Fig. 4 show vn{PP} as a func-

tion of �Nch�. The results for 2.76 TeV span about a
factor of 2.5 larger �Nch� range than those for 0.2 TeV,
due to a larger multiplicity at a higher collision energy.
More interestingly, the shape of the �Nch� dependence
of v2{PP} is qualitatively di↵erent from its Npart depen-
dence: v2 increases with �Nch�, reaching a plateau, then
increases again towards higher �Nch�. The increase at

1
The possibility of a run in fall 2021 is being discussed.

S. H. Lim, et al., Phys. Rev. C 99, 044904 (2019) 

S. H. LIM et al. PHYSICAL REVIEW C 99, 044904 (2019)

FIG. 3. An example of time evolution of a O+O event from SONIC; the color scale indicates the local temperature.

spread over a larger area. The p+O and p+Pb geometries are
more compact and thus have a steeper pressure gradient that
translates into a slightly larger momentum anisotropy.

For exploring the initial condition dependence, we have run
the identical SONIC hydrodynamic evolution code on IP-Jazma
generated initial conditions for O+O collisions. Figure 6
shows the initial geometry eccentricities comparing the Monte
Carlo Glauber and IP-Jazma results. In the small impact
parameter collisions, the IP-Jazma initial conditions result in
significantly larger eccentricities which is expected because
the “hot spots” will be smaller because the energy deposit
is a multiplicative result from the projectile and target color
charge distributions. An interesting feature is that at large
impact parameter, the IP-Jazma eccentricities all tend towards

zero. In the case of a single nucleon-nucleon collision, the
multiplication of two Gaussian color charge distributions,
i.e., one from each nucleon, yields exactly a Gaussian which
is circularly symmetric and has εn = 0. We note that these
eccentricities in IP-Jazma are sensitive to the IP-Sat Gaussian
width and a value larger than 0.32 fm as used here will reduce
the eccentricities. A value of 0.50 fm reduces the ε2 to the
same level as the Monte Carlo Glauber for b < 5 fm.

Figure 7 shows a comparison between the previously
discussed Monte Carlo Glauber initial conditions and the
new IP-Jazma initial conditions both run through the SONIC
evolution. The left panel compares the multiplicity distribu-
tions in both cases. Note that at the lowest multiplicity, the
Monte Carlo Glauber case cuts off because one requires at
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5

FIG. 2. "2{2} (left) and "3{2} (right) versus radius for PbPb, XeXe, ArAr, and OO collisions at the LHC
top energies in 0–10% and 30–50% centrality classes.
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FIG. 3. D0 meson v2{2} for PbPb, XeXe with spherical and prolate initial nuclei, ArAr, and OO collisions
at the LHC top energies in 0–10% (top) and 30–50% (bottom) centrality classes.

come from primarily ultracentral collisions [54, 59, 90–98].
We also explore these e↵ects on v3{2}(pT) in Fig. 4 and find that v3 is more sensitive to system

size e↵ects i.e. v3 is more consistently suppressed in small systems in both centrality classes, even
when there is a significant increase in "3. Additionally, we find that the approximate universality
of v3{2}(pT) across centralities in PbPb collisions (see also [50, 85]) is not observed in smaller
systems. This approximate universality can then be explained by a balance between the variations
in path length and eccentricity with centrality. The di↵erent response of v2 and v3 to system size

Roland Katz, et al., arXiv:1907.03308v1

Recently some theoretical works 
propose the system scan in experiments 
AMPT, SONIC, Hydro. 
RIHC & LHC 
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• AMPT


• α-cluster nuclei effect on collective flow


• α-cluster nuclei effect on electromagnetic field


• α-cluster nuclei effect on HBT correlations
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AMPT (a multi-phase transport model), Z. W. Lin, C. M. Ko, B. A. Li, S. Pal, PRC-72-064901(2005) 

(1) initial condition (HIJING);  

(2) parton cascade (ZPC); 

(3) hadronizition;                    

(4) hadronic rescattering (ART) 

For high energy heavy ion collisions 
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Quadrangular flow
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Quadrangular flow via EP- and PP-plane
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✓ EP-method and PP-method give 
different system dependence of v4 

✓ Ψ4{EP} gradually approach Ψ4{PP} 
from small system to large one

Ψn{PP} =
atan2 (⟨r2 sin (nϕPart)⟩, ⟨r2 cos (nϕPart)⟩) + π

n
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n

tan−1 (
Qy

Qx )



F

S. Zhang (张松), IMP, Fudan, 

Ratio of flow to eccentricity
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✓ κn increasing with the increasing of system size (most central collisions)  
✓ Same A+A collisions with different initial structure configuration, the 

similar κn
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System dependence and  of electromagnetic fields and 
α-cluster nuclei effect (I)
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Li´enard-Wiechert potentials
Huang,(PRC) 85, 044907 (2012)
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Zn  :   coordinate position
Rn = r − rn :   r is the position of source point 

(the Lorentz contraction is considered)

rn is the position of the n-th particle at the retarded time tn = t − |r − rn| and
tn < t
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System dependence and  of electromagnetic fields and 
α-cluster nuclei effect (II)
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✓ <Ex>: the asymmetric projectile and target nuclear collisions 
produce stronger electric field than symmetrical collision 
system

✓ -<By>: the magnetic field will be in the reverse trend
✓ α-cluster effect at semi-central collisions for chain structure

Y. L. Cheng (程艺林), S. Zhang, Y. G. Ma, et al., Phys. Rev. C 99, 054906 (2019) 
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HBT correlation and α-cluster nuclei effect (I)
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HBT radii

C(~q, ~K) =

R
d4x1d4x2S(x1, p1)S(x2, p2)|�(~q0, ~r0)|2R

d4x1S(x1, p1)
R
d4x2S(x2, p2)

(1)

C(~q, ~K) = 1±

�����

R
d4xei~q·(~x�

~�t)S(x,K)R
d4xS(x,K)

�����

2

(2)

C(~q, ~K) = 1± e�
P

i,j=o,s,l R
2
ij(

~K)qiqj (3)

R2
s(KT ,�, Y ) =h(y cos�� x sin�)2i

� hy cos�� x sin�i2
(4)

R2
o(KT ,�, Y ) =h(x cos�+ y sin�� �?t)

2i
� hx cos�+ y sin�� �?ti2

(5)
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HBT correlation and α-cluster nuclei effect (II)
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Azimuthal angle dependence of the HBT radii
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Junjie He (何俊杰)

✓Small HBT-radius in collisions with triangle 
nuclei structure 
✓Significant participant plane dependence
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Summary

• Collective flow change smoothly with system size in most 
central collisions, Woods-Saxon distribution of nucleon


• α-cluster effect significant with the baseline from Woods-
Saxon distribution


• Symmetry and asymmetry collision system result in 
different electromagnetic field effect 


• HBT-radius sensitive to the α-cluster effect


• Proposal of system scan experiments, experimentally 
illustrate how initial geometrical asymmetry transfer to 
momentum space

�32
Thank you for your attention!
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Collective flow with respective to participant plane

�34

538 S.A. Voloshin et al. / Physics Letters B 659 (2008) 537–541

Fig. 1. The definitions of the RP and PP coordinate systems.

Fig. 2. The definition of the EP coordinate system.

The orientation of the flow vector Q = {Qx,Qy} =
{∑i cos 2φi ,

∑
i sin 2φi}, where the sum runs over all parti-

cles in some momentum window, defines the second harmonic
event plane (see Fig. 2) with corresponding azimuth ΨEP,
Qx = Q cos 2ΨEP, Qy = Q sin 2ΨEP. Although we use Q in
this Letter, in practice one would use q = Q/

√
N in order to

minimize the effect of the multiplicity spread within a central-
ity bin [2]. For a given orientation of the participant plane, ΨPP,
anisotropic flow develops along this participant plane.

The orientation of the participant plane can be also charac-
terized by the eccentricity vector with coordinates

(1)ε = {εx, εy} =
{〈

σ 2
y − σ 2

x

σ 2
x + σ 2

y

〉

part
,

〈
2σxy

σ 2
x + σ 2

y

〉

part

}
,

where σ 2
x = ⟨x2⟩ − ⟨x⟩2, σ 2

y = ⟨y2⟩ − ⟨y⟩2, and σ 2
xy = ⟨xy⟩ −

⟨y⟩⟨x⟩, and the average is taken over the coordinates of the
participants in a given event [3–5]. The eccentricity vector di-
rection is given by ΨPP = atan 2(εy, εx), and its magnitude,

εpart =
√

ε2
x + ε2

y ≡ εPP, is called the participant eccentricity
(see Figs. 3, 4) in contrast with the reaction plane (or standard)
eccentricity εx ≡ εRP with its mean value defined to be

(2)⟨εx⟩ = ⟨εRP⟩ ≡ ε̄.

This mean value is approximately εopt, the optical eccentricity
determined by the optical Glauber model [6].

Fig. 3. Definition of εpart.

Fig. 4. Flow vector distribution in events with fixed ε.

3. Gaussian model for eccentricity fluctuations

In events with fixed ε, both in magnitude and orientation, the
flow vector on average points along ε, but with the magnitude
and orientation of the flow vector fluctuating due to finite mul-
tiplicity of particles used in its definition. As can be seen from
simulations using the MC Glauber model [3–5] in Fig. 5, the
distributions in εx and εy are well approximated by a Gaussian
form with widths approximately equal in the two directions.
There exists some deviation from a Gaussian form in periph-
eral collisions, but even there the deviations are small, so we
proceed with the Gaussian ansatz. We denote the equal widths
in εx and εy by σε . The distribution in the magnitude of the ec-
centricity, εpart, can be obtained by integration over angle of the
vector ε as a two-dimensional Gaussian (see, for example, the
derivation in [7]), and is given by

dn

dεpart
= εpart

σ 2
ε

I0

(
εpart⟨εRP⟩

σ 2
ε

)
exp

(
−

ε2
part + ⟨εRP⟩2

2σ 2
ε

)

(3)≡ BG
(
εpart; ⟨εRP⟩,σε

)
,

where we have introduced a short hand notation BG(x; x̄,σ )

for the “Bessel–Gaussian” distribution with one variable argu-
ment and two constant parameters (see Fig. 6). Note that in
BG(εpart; ⟨εRP⟩,σε), εpart is an eccentricity as given in PP but
⟨εRP⟩ and σε describe the 2D Gaussian distribution in the RP-
system. The distribution is normalized to unity. For later use we
provide a few moments of the distribution BG(x; x̄,σ ), where
x is a generic variable (not the x-axis):

⟨x⟩ = 1
2σ

exp
(

− x̄2

4σ 2

)√
π

2

[(
2σ 2 + x̄2)I0

(
x̄2

4σ 2

)

(4)+ x̄2I1

(
x̄2

4σ 2

)]
,

E
d3N

d3p
=

1
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d2N

pT dpT dy
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1X
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2vncos[n(�� r)]

!

vn =< cos[n(�� r)] >
v1 =< px/pT >
v2 =< (px/pT )2 � (py/pT )2 >

Ψn{PP} =
atan2 (⟨r2 sin (nϕPart)⟩, ⟨r2 cos (nϕPart)⟩) + π

n

vn{PP} ≡ ⟨cos(n[ϕ − Ψn{PP}])⟩

ϵn{PP} ≡
⟨r2 cos (nϕPart)⟩

2
+ ⟨r2 sin (nϕPart)⟩

2

⟨r2⟩
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Hydrodynamical calculation  suggested how the initial geometry distribution (fluctuation) transforms into final collective flow 
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Collective flow with respective to event plane
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Qx ≡
M

∑
i

ωi cos(nϕi)

Qy ≡
M

∑
i

ωi sin(nϕi)

Ψn{EP} =
1
n

tan−1 (
Qy

Qx )
vn{EP} =

vobs
n

Res{Ψn{EP}}
,

vobs
n = ⟨cos(km(ϕ − Ψn{EP}))⟩,

Res{Ψn{EP}} = ⟨cos(km(Ψn{EP} − ΨRP))⟩

A. M. Poskanzer, S. A. Voloshin, Phys. Rev. C 58 (1998) 1671
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Collective flow via 2-particle correlation
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C(Δϕ, Δη) =
S(Δϕ, Δη)
B(Δϕ, Δη)

S(Δϕ, Δη) =
dN

dΔϕdΔη
,

B(Δϕ, Δη) =
dN

dΔϕdΔη

C(Δϕ)2<|Δη|<5 = A
∫ S(Δϕ, Δη)dΔη
∫ B(Δϕ, Δη)dΔη

dNpairs

dΔϕ
∝ 1 + 2

∞

∑
n=1

vn,n (pa
T, pb

T) cos(nΔϕ)

vn,n = ⟨cos(nΔϕ)⟩ =
∑N

m=1 cos(nΔϕm)C(Δϕm)

∑N
m=1 C(Δϕ)

vn = vn,n / |vn,n |
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Collective flow via Q-cumulant (I)
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Qn =
M

∑
i=1

einϕi

⟨2⟩ = ⟨ein(ϕ1−ϕ2)⟩ =
|Qn |2 − M
M(M − 1)

,

⟨4⟩ = ⟨ein(ϕ1+ϕ2−ϕ3−ϕ4)⟩
= { |Qn |4 + |Q2n |2 − 2Re[Q2nQ*n Q*n ]

−2[2(M − 2) |Q2n |2 − M(M − 3)]}
/[M(M − 1)(M − 2)(M − 3)] .

⟨⟨2⟩⟩ = ⟨⟨ein(ϕ1−ϕ2)⟩⟩ =
∑event (W⟨2⟩)i⟨2⟩i

∑event (W⟨2⟩)i
,

⟨⟨4⟩⟩ = ⟨⟨ein(ϕ1+ϕ2−ϕ3−ϕ4)⟩⟩ =
∑event (W⟨4⟩)i⟨4⟩i

∑event (W⟨4⟩)i

cn{2} = ⟨⟨2⟩⟩,
cn{4} = ⟨⟨4⟩⟩ − 2 × ⟨⟨2⟩⟩2,

vn{2} = cn{2},

vn{4} = 4 −cn{4}

A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83 (2011) 044913 

B. L. Adamczyk, , et al., Phys. Rev. C 86 (2012) 054908 
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Collective flow via Q-cumulant (II)
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particles selected for flow calculation labeled as reference flow particle (RFP), particle of interest (POI)

pn ≡
mp

∑
i=1

einϕi

qn ≡
mq

∑
i=1

einϕi

mp total number of POIs and 
mq total number for POIs labeled also as RFP

ω⟨2′�⟩ ≡ mpM − mq

ω⟨4′�⟩ ≡ (mPM − 3mq)(M − 1)(M − 2) .

⟨2′�⟩ =
pnQ*n − mq

mpM − mq

⟨4′�⟩ = [pnQnQ*n Q*n − q2nQ*n Q*n − pnQnQ*2n

−2MpnQ*n − 2mq |Qn |2 + 7qnQ*n
−Qnq*n + q2nQ*2n + 2pnQ*n + 2mqM
−6mq]/[(mpM − 2mq((M − 1)(M − 2)] .

⟨⟨2′�⟩⟩ =
∑N

i=1 (ω⟨2′�⟩)i⟨2′�⟩

∑N
i=1 (ω⟨2′ �⟩)i

⟨⟨4′�⟩⟩ =
∑N

i=1 (ω⟨4′�⟩)i⟨4′�⟩

∑N
i=1 (ω⟨4′ �⟩)i

dn{2} = ⟨⟨2′�⟩⟩
dn{4} = ⟨⟨4′�⟩⟩ − 2⟨⟨2′�⟩⟩⟨⟨2′�⟩⟩

v′�n{2} =
dn{2}
cn{2}

v′�n{4} = −
dn{4}

(−cn{4})3/4

RFP - POI
Gap
POI
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Collective flow via Q-cumulant (4-particle) with 3-subvent
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a b c

−ηmax < ηa < − ηmax /3 |ηb | < ηmax /3 ηmax /3 < ηc < ηmax

Ma Mb Mc

⟨{2}n⟩a|b = Re[
Qn,aQ*n,b

MaMb
]

⟨{4}n⟩2a|b,c =
(Q2

n,a − Q2n,a)Q*n,bQ*n,c

Ma(Ma − 1)MbMc

c2a|b,c{4} ≡ ⟨{4}n⟩2a|b,c − 2⟨{2}n⟩a|b⟨{2}n⟩a|c,

J. Jia, M. Zhou, A. Trzupek, Phys. Rev. C 96 (2017) 034906.  
M. Aaboud, et al., Phys. Rev. C 97 (2018) 024904. 


