Spectrum of light baryons @ BESIII

鄢文标 (中国科学技术大学)

On behalf of BESIII Collaboration

第二届理论与实验联合研讨会:重子谱和衰变,兰州,2018.12.16

1

Outline

• Introduction

• Light baryon spectrum @ BESIII

- ✓ N* spectrum
- ✓ Λ* spectrum
- ✓ Σ* spectrum
- ✓ **Ξ*** spectrum
- Baryon electromagnetic form factor (G_E & G_M)
- Summary

Nucleon resonances spectrum

• Up to 2.4GeV, there are about 45 N* states are predicted, but only 20 are established (four/ three star) and 5 are tentative (one/two star).

						\mathbf{St}	atus as	seen	in			
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	$N\eta\prime$
N	$1/2^{+}$	****										
N(1440)	$1/2^{+}$	****	****	****	****	***						
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*			
N(1680)	$5/2^{+}$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	**	***	***	*	*			*		
N(1710)	$1/2^{+}$	****	****	****	*		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**
N(1990)	$7/2^{+}$	**	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	**	*	**	*	*				*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**				-				
N(2600)	$11/2^{-}$	***		***				ŀ	'D	G]	L ð	
N(2700)	$13/2^{+}$	**		**								

"Missing resonances" problem

- Important goal: search for "missing resonances" not observed experimentally.
- Theoretically: reduce the number of degree of freedom.

• Experimentally: If the missing N*s have small coupling to πN and γN , they would not have been discovered by experiments Using photons or pions

Baryon spectrum at BESIII

	Previous	BESIII	BESIII Goal					
J /ψ	58M @ BES	1.2B	10B					
ψ(3686)	28M @CLEO	0.5B	3B					
ψ(3770)	0.8fb ⁻¹ @CLEO	2.9fb ⁻¹	20fb ⁻¹					
χ _{cj}	$\psi(3686) \to \gamma \ \chi_{CJ} @ (9-10) \%$							
η _C (1S)	$J/\psi \rightarrow \gamma \ \eta_C(1S) \ @ \ 1.7 \ \%$							

- Pure isospin 1/2 filter: $\psi \rightarrow N\overline{N}\pi$ (or $N\overline{N}\pi\pi$)
- Missing N* with small couplings to πN and γN , but large coupling to gggN.
- Interference between N* and \overline{N} *bands in $\psi \rightarrow N\overline{N}\pi$ Dalitz plots may help to distinguish Some ambiguities in PWA of πN
- Not only N*, but also Λ^* , Σ^* , Ξ^* .
- High statistics of charmonium at BESIII.

N* spectrum

						\mathbf{St}	atus as	s seen	in			
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	$N\eta'$
N	$1/2^{+}$	****										
N(1440)	$1/2^{+}$	****	****	****	****	***						
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*			
N(1680)	$5/2^{+}$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	**	***	***	*	*			*		
N(1710)	$1/2^{+}$	****	****	****	*		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**
N(1990)	$7/2^{+}$	**	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	**	*	**	*	*				*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**					D	N (21	Q
N(2600)	$11/2^{-}$	***		***							JI	U
N(2700)	$13/2^{+}$	**		**								

- $J/\psi \rightarrow p\overline{p}\varphi$
- $J/\psi \to p\overline{p}\omega$
- $J/\psi \rightarrow p\overline{p} a_0(980)$
- $\psi(3686) \rightarrow p\overline{p}\pi^0$
 - $\psi(3686) \rightarrow p\overline{p}\eta$
 - $e^+e^- \rightarrow p\overline{p}\pi^0$ around 3.773 GeV
 - $e^+e^- \rightarrow p\overline{p}\pi^0$ @ [4.008, 4.600]GeV
 - $\psi(3686) \rightarrow \overline{p}K^+\Sigma^0 + c.c.$
 - $\chi_{cJ} \rightarrow p \overline{n} \pi^- + c.c$
 - $\chi_{cJ} \rightarrow p \overline{n} \pi^- \pi^0 + c.c$

- There are no obvious structures, but distributions are different from phase space MC.
- No obvious pp threshold
- Disfavior pure FSI interpretation

10

0

0

0.05

0.1

 $M(p\overline{p})-2m_{p}$ (GeV/c²)

0.2

0.15

450

350

300

250

200

150

100

0.4

0.3

0.2

0.1 0.0

0.00

0.05

 M_{pp} -2mp (GeV/c²)

0.10

0.0

0.00

0.05

M_{pp}-2m_p (GeV/c²)

0.10

Events / (10MeV/c²

Efficiency

 $p\overline{p}$ mass spectrum near its threshold

$J/\psi \rightarrow p\overline{p}a_0(980)$

$\psi(3686) \rightarrow p\overline{p}\pi^0$

Resonance	$M({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	ΔS	$\Delta N_{\rm dof}$	Sig.
N(1440)	1390^{+11+21}_{-21-30}	$340^{+46+70}_{-40-156}$	72.5	4	11.5σ
N(1520)	1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	19.8	6	5.0σ
N(1535)	1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	49.4	4	9.3σ
N(1650)	1650^{+5+11}_{-5-30}	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	1700^{+30+32}_{-28-35}	$450^{+109+149}_{-94-44}$	55.6	6	9.6 <i>o</i>
N(2300)	$2300\substack{+40+109\\-30-0}$	$340\substack{+30+110\\-30-58}$	120.7	4	15.0σ
N(2570)	$2570\substack{+19+34\\-10-10}$	250^{+14+69}_{-24-21}	78.9	6	11.7 σ

 $\psi(3686) \rightarrow X\pi^0 \rightarrow p\overline{p}\pi^0$ $\psi(3686) \rightarrow p\overline{N}^* + c.c \rightarrow p\overline{p}\pi^0$

1()

- Isospin conservation: Δ suppressed.
- Two new excited states N(2300) (1/2⁺) and N(2570) (5/2⁻) are observed.

• The pp threshold enhancement most likely is due to interference of N*s.

• No clear evidence for N(1885) and N(2065).

 $\begin{aligned} &Br[\psi(3686) \rightarrow p\overline{p}\eta] = (6.4 \pm 0.2 \pm 0.6) \times 10^{-5} \\ &Br[\psi(3686) \rightarrow N(1535)\overline{p} + \text{c.c.}] = (5.2 \pm 0.3^{+3.2}_{-1.2}) \times 10^{-5} \\ &\frac{Br[\psi(3686) \rightarrow p\overline{p}\eta]}{Br[J/\psi \rightarrow p\overline{p}\eta]} = (3.2 \pm 0.4)\% \end{aligned}$

Explained by interference between N(1535) and phase space

- PWA: N(1535) and PHSP are dominant

 N(1535) @ PWA: M=1524±5⁺¹⁰₋₄ MeV; Γ =130⁺²⁷⁺⁵⁷₋₂₄₋₁₀ MeV
 N(1535) @ PDG: M=1525 to 1545 MeV; Γ = 125 to 175 MeV

 No ovidence for a n[±] mean and
- No evidence for a pp resonance
- 12% rule: violated in $p\overline{p}\eta$ mode.

$e^+e^- \rightarrow p\overline{p}\pi^0 @ 3.773 \text{ GeV}$

- ψ(3770) → non-DD̄: BESII: (14.7±3.2)%; theory prediction < 5%
 ✓ Search for non-DD̄ decay modes: useful to understand puzzle
 ψ(3770) → NN̄ + hadrons provides a chance to study N*
 - ✓ @3.773GeV: $\psi(3770)$ strong decays or $\gamma^* \rightarrow N\overline{N}$ + hadrons

$e^+e^- \rightarrow p\overline{p}\pi^0 \ @ \ [4.008, 4.600] GeV$

• PWA for MC production $\checkmark e^+e^- \rightarrow p\overline{N}^* + c.c$ $\checkmark e^+e^- \rightarrow p\overline{\Delta}^* + c.c$ $\checkmark e^+e^- \rightarrow \rho^*(\omega^*)\pi^0$

1203 event @ 4.258GeV

- [4.189, 4.600] GeV: N(1440), $\rho(2150)$ and $\rho_3(1990)$
- [4.008, 4.085] GeV: N(1520), N(2570), ρ(2150) and ρ₃(1990)

$\psi(3686) \rightarrow \overline{p}K^+\Sigma^0 + c.c.$

Channel	$\psi' \rightarrow \bar{p}K^+ \Sigma^0 + \text{c.c.}$
B(BESIII) PDG	$(1.67 \pm 0.13 \pm 0.12) \times 10^{-5}$

• A hint for structure N* around 2.4GeV.

$\chi_{cJ} \rightarrow p \overline{n} \pi^- + c.c$

A large enhancement around *pπ* threshold
Structure around 1.4 & 1.7GeV for pπ⁻ and ππ⁻ invariant mass spectrum, peak around 2.0GeV due to high mass N* or reflection of *pπ* threshold enhancement.

$\chi_{cJ} \rightarrow p \overline{n} \pi^- \pi^0 + c.c$

- No obvious N* state
- Similar to that of phase space, except for ρ signal
- A chance for $\chi_{cJ} \rightarrow p \overline{n} \rho$

		$\chi_{cJ} \rightarrow p \bar{n} \pi^- \pi^0$		$\chi_{cJ} ightarrow ar{p} n \pi^+ \pi^0$			
$ \begin{array}{c} N_{\rm sig} \\ \boldsymbol{\varepsilon}_{cJ} (\%) \\ \boldsymbol{\mathcal{B}} (10^{-3}) \end{array} $	χ_{c0}	χ_{c1}	χ_{c2}	χ_{c0}	χ_{c1}	χ_{c2}	
	2480 ± 85	1082 ± 52	2128 ± 62	2757 ± 94	1261 ± 60	2352 ± 69	
	10.4 ± 0.1	10.4 ± 0.2	9.8 ± 0.1	12.2 ± 0.1	12.3 ± 0.2	11.2 ± 0.1	
	2.36 ± 0.08	1.08 ± 0.05	2.38 ± 0.07	2.23 ± 0.08	1.06 ± 0.05	2.30 ± 0.07	

Λ* spectrum

			Status as seen in —							
Particle	J^P	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma \pi$	Other channels				
$\Lambda(1116)$	1/2 +	****		F		$N\pi$ (weakly)				
$\Lambda(1405)$	1/2 -	****	****	0	****					
$\Lambda(1520)$	3/2 -	****	****	r	****	$\Lambda\pi\pi,\Lambda\gamma$				
$\Lambda(1600)$	1/2 +	***	***	b	**					
$\Lambda(1670)$	1/2-	****	****	i	****	$\Lambda\eta$				
$\Lambda(1690)$	3/2 -	****	****	d	****	$\Lambda\pi\pi,\Sigma\pi\pi$				
$\Lambda(1800)$	1/2 -	***	***	d	**	$N\overline{K}^*, \Sigma(1385)\pi$				
$\Lambda(1810)$	1/2 +	***	***	е	**	$N\overline{K}^*$				
$\Lambda(1820)$	5/2 +	****	****	n	****	$\Sigma(1385)\pi$				
$\Lambda(1830)$	5/2-	****	***	\mathbf{F}	****	$\Sigma(1385)\pi$				
$\Lambda(1890)$	3/2 +	****	****	О	**	$N\overline{K}^*, \Sigma(1385)\pi$				
$\Lambda(2000)$		*		r	*	$\Lambda\omega, N\overline{K}^*$				
$\Lambda(2020)$	7/2 +	*	*	Ь	*					
$\Lambda(2100)$	7/2 -	****	****	i	***	$\Lambda\omega, N\overline{K}^*$				
$\Lambda(2110)$	5/2 +	***	**	\mathbf{d}	*	$\Lambda\omega, N\overline{K}^*$				
$\Lambda(2325)$	3/2 -	*	*	d		$\Lambda\omega$ DDC10				
$\Lambda(2350)$		***	***	е	*	rDG1ð				
$\Lambda(2585)$		**	**	n						

• $\psi(3686) \rightarrow \Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$

• $\chi_{cI} \rightarrow \overline{p}K^+\Lambda + c.c.$

• $\chi_{cJ} \rightarrow p\overline{p}K^+K^-$

$\psi(3686) \rightarrow \Lambda \overline{\Sigma}^+ \pi^- + c.c.$

• Excited strange baryons between 1.5GeV and 1.7GeV are observed.

$$\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^+ \pi^- + \text{c.c.})$$

= (1.40 ± 0.03 ± 0.13) × 10⁻⁴,
$$\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^- \pi^+ + \text{c.c.})$$

= (1.54 ± 0.04 ± 0.13) × 10⁻⁴,

$$Q_{\Lambda\bar{\Sigma}^{-}\pi^{+}} = \frac{\mathcal{B}(\psi(3686) \to \Lambda\bar{\Sigma}^{-}\pi^{+})}{\mathcal{B}(J/\psi \to \Lambda\bar{\Sigma}^{-}\pi^{+})} = (9.3 \pm 1.2)\%,$$
18

$\chi_{cJ} \to p \overline{p} K^+ K^-$

- Clear $\Lambda(1520)$, a hint for Λ^* around 1.67GeV
- $\chi_{cJ} \rightarrow p\overline{p}\phi$: $p\phi$ or $p\overline{p}$ invariant mass ?
- $\chi_{cJ} \rightarrow \Lambda(1520) \overline{\Lambda}(1520)$: test of Colour Octet Model

	χ_{c0}	χ_{c1}	χ_{c2}
$\mathcal{B}(\chi_{cJ} \to p\bar{p}K^+K^-) \ (10^{-4})$	$1.24 \pm 0.20 \pm 0.18$	$1.35 \pm 0.15 \pm 0.19$	$2.08 \pm 0.19 \pm 0.30$
$\mathcal{B}(\chi_{cJ} \rightarrow \bar{p}K^+\Lambda(1520) + \text{c.c.}) \ (10^{-4})$	$3.00 \pm 0.58 \pm 0.50$	$1.81 \pm 0.38 \pm 0.28$	$3.06 \pm 0.50 \pm 0.54$
$\mathcal{B}(\chi_{cJ} \rightarrow \Lambda(1520)\bar{\Lambda}(1520)) \ (10^{-4})$	$3.18 \pm 1.11 \pm 0.53$	<1.00	$5.05 \pm 1.29 \pm 0.93$
$\mathcal{B}(\chi_{cJ} \to p\bar{p}\phi) \ (10^{-5})$	$6.12 \pm 1.18 \pm 0.86$	<1.82	$3.04 \pm 0.85 \pm 0.43$

$\chi_{cJ} \rightarrow \overline{p}K^+\Lambda + c.c.$

$e^+e^- \rightarrow pK_s \overline{n}K^- @ [3.773, 4.600]GeV$

Σ* spectrum

			Status as seen in —					
Particle	J^P	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma \pi$	Other channels		
$\Sigma(1193)$	1/2+	****				$N\pi$ (weakly)		
$\Sigma(1385)$	3/2+	****		****	****	1.1.(
$\Sigma(1480)$	-/	*	*	*	*			
$\Sigma(1560)$		**		**	**			
$\Sigma(1580)$	3/2 -	*	*	*				
$\Sigma(1620)$	1/2 -	**	**	*	*			
$\Sigma(1660)$	1'/2+	***	***	*	**			
$\Sigma(1670)$	3/2 -	****	****	****	****	several others		
$\Sigma(1690)$		**	*	**	*	$\Lambda \pi \pi$		
$\Sigma(1750)$	1/2 -	***	***	**	*	$\Sigma\eta$		
$\Sigma(1770)$	1/2+	*						
$\Sigma(1775)$	5/2 -	****	****	****	***	several others		
$\Sigma(1840)$	3/2+	*	*	**	*			
$\Sigma(1880)$	1/2+	**	**	**		$N\overline{K}^*$		
$\Sigma(1915)$	5/2+	****	***	****	***	$\Sigma(1385)\pi$		
$\Sigma(1940)$	3/2 -	***	*	***	**	quasi-2-body		
$\Sigma(2000)$	1/2 -	*		*		$N\overline{K}^*$, A(1520) π		
$\Sigma(2030)$	7/2+	****	****	****	**	several others		
$\Sigma(2070)$	5/2 +	*	*		*			
$\Sigma(2080)$	3/2 +	**		**				
$\Sigma(2100)$	7/2 -	*		*	*			
$\Sigma(2250)$	· · · ·	***	***	*	*			
$\Sigma(2455)$		**	*			PDC18		
$\Sigma(2620)$		**	*					
$\Sigma(3000)$		*	*	*				
$\Sigma(3170)$		*				multi-body		

• J/ ψ and $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0$ and $\Lambda \overline{\Lambda} \eta$ • $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \pi^+ \pi^-$

J/ ψ and $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0$ and $\Lambda \overline{\Lambda} \eta$

- Large uncertainty in literature
- Systematic measurement

 ✓ ΛΛπ⁰: isospin breaking
 ✓ ΛΛη: conserve isospin

 Test on 12% rule

$$Q_h = \frac{\mathcal{B}(\psi' \to \Lambda \bar{\Lambda} \pi^0)}{\mathcal{B}(J/\psi \to \Lambda \bar{\Lambda} \pi^0)} < 10.0\%$$

TABLE III. A comparison of the branching fractions of this work with the results of previous experiments (10^{-5}) . The first error is statistical and the second one indicates the systematical uncertainty.

Experiments	$\mathcal{B}(J/\psi \to \Lambda \bar{\Lambda} \pi^0)$	$\mathcal{B}(J/\psi \to \Lambda \bar{\Lambda} \eta)$	$\mathcal{B}(\psi' \to \Lambda \bar{\Lambda} \pi^0)$	$\mathcal{B}(\psi' \to \Lambda \bar{\Lambda} \eta)$
This experiment	$3.78 \pm 0.27 \pm 0.30$	$15.7 \pm 0.80 \pm 1.54$ 26.2 + 6.0 + 4.4	<0.29 <4 9	$2.48 \pm 0.34 \pm 0.19$
BESI [2]	$23.0 \pm 7.0 \pm 8.0$	20.2 = 0.0 = 4.4	\$1.7	
DM2 [1]	$22.0 \pm 5.0 \pm 5.0$			

$\chi_{cJ} \to \ \Lambda \overline{\Lambda} \pi^+ \pi^-$

Clear Σ(1385), a bump around 1.5-1.6 GeV
 χ_{cl} → Σ(1385) Σ(1385): test of Colour Octet Model

χ_{cJ} decay mode	χ_{c0}			χ_{c1}			χ_{c2}		
	${\mathcal B}$	UL	S	${\mathcal B}$	UL	S	${\mathcal B}$	UL	S
$\Lambda \bar{\Lambda} \pi^+ \pi^- (w/o\Sigma(1385))$	$28.6 \pm 12.6 \pm 2.7$	<54	2.2	$26.2 \pm 5.5 \pm 3.3$		4.8	$71.8 \pm 14.5 \pm 8.2$		6.4
$\Sigma(1385)^{+}\bar{\Lambda}\pi^{-}$ + c.c.	$34.8 \pm 13.2 \pm 3.4$	<55	2.2		<14	0.3	$23.6 \pm 11.8 \pm 2.7$	<42	1.7
$\Sigma(1385)^{-}\bar{\Lambda}\pi^{+} + c.c.$	$24.6 \pm 12.7 \pm 2.4$	<50	1.6		<14	0.0	$37.8 \pm 11.8 \pm 4.4$	<61	2.6
$\Sigma(1385)^+ \overline{\Sigma}(1385)^-$	$16.4 \pm 5.7 \pm 1.6$		3.1	$4.4 \pm 2.5 \pm 0.6$	<10	1.9	$7.9 \pm 4.0 \pm 0.9$	<17	2.0
$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$23.5 \pm 6.2 \pm 2.3$		4.3		<5.7	0.9		< 8.5	0.0
$\Lambda\bar{\Lambda}\pi^+\pi^-$ (total)	$119.0 \pm 6.4 \pm 11.4$		>10	$31.1 \pm 3.4 \pm 3.9$		>10	$137.0 \pm 7.6 \pm 15.7$		>10

E* spectrum

Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
$\Xi(1318)$	1/2 +	****					Decays weakly
$\Xi(1530)$	3/2 +	****	****				
$\Xi(1620)$		*	*				
$\Xi(1690)$		***		***	**		
$\Xi(1820)$	3/2 -	***	**	***	**	**	
$\Xi(1950)$		***	**	**		*	
$\Xi(2030)$		***		**	***		PDG18
$\Xi(2120)$		*		*			
$\Xi(2250)$		**					3-body decays
$\Xi(2370)$		**					3-body decays
$\Xi(2500)$		*		*	*		3-body decays

• $\psi(3686)$ and $\chi_{cJ} \rightarrow K^- \Lambda \overline{\Xi}^+ + c.c.$

$\psi(3686) \rightarrow K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$

- Use $\Lambda \to p \pi^-$ and $\overline{\Xi}^+ \to \overline{\Lambda} \pi^+$
- The resonance parameters of $\Xi(1690)$ and $\Xi(1820)$ are consistent with PDG.

	$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$M(\text{MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(MeV)$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
$B(10^{-6})$	$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$
$M_{\rm PDG}({\rm MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{PDG}(MeV)$	< 30	24^{+15}_{-10}

 $\psi(3686) \rightarrow \gamma K^- \Lambda \Xi^+ + c.c.$

Use Λ → p π⁻ and Ξ⁺ → Λ π⁺
Clear Σ⁰ and χ_{cJ} states with low background

Decay	Branching fraction
$\psi(3686) \rightarrow K^- \Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \to \Xi(1690)^-\bar{\Xi}^+,$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\Xi(1690)^- \rightarrow K^-\Lambda$	
$\psi(3686) \to \Xi(1820)^- \bar{\Xi}^+,$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\Xi(1820)^- \to K^-\Lambda$	
$\psi(3686) \to K^- \Sigma^0 \Xi^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-3}$
$\psi(3686) \to \gamma \chi_{c0}, \chi_{c0} \to K \Lambda \Xi^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$ $(1.22 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3080) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K \Lambda \Xi^+$ $\psi(3686) \rightarrow \psi \chi_{c1}, \chi_{c1} \rightarrow K \Lambda \Xi^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$ $(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\psi(5000) \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K \Lambda \Xi^+$	$(1.08 \pm 0.20 \pm 0.13) \times 10^{-4}$
$\gamma_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.91 \pm 0.10) \times 10^{-4}$ $(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \to K^- \Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$

Form factor of nucleon

• Hadron vertex are described by Dirac FF (F₁) & Pauli FF (F₂) $\Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{p}}F_{2}(q^{2})$

Sachs FFs: electric G_E and magnetic G_M

$$\begin{array}{l} G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2) \\ G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2) \end{array} \quad \tau = \frac{q^2}{4m_p^2}, \quad \kappa_p = \frac{g_p - 2}{2} = \mu_p - 1 \end{array}$$

• $G_E \& G_M$: spatial distribution of charge and magnetization, charge density distribution 28

$e^+e^- \rightarrow B\overline{B}$

• In one-photon exchange approximation

$$\checkmark \frac{d\sigma}{d\cos\theta_B} = \frac{\pi \alpha^2 \beta C}{2s^2} [|G_M|^2 (1 + \cos^2\theta_B) + \frac{1}{\tau} |G_M|^2 \sin^2\theta_B]$$

$$\checkmark \text{ Baryon velocity } \beta = (1 - 4m_B^2/s)^{0.5}$$

• Coulomb factor C

✓ for s-wave only

$$\checkmark$$
 C= $\frac{\pi\alpha}{\beta} \frac{1}{1-e^{-\pi\alpha/\beta}}$ @ charged

- Cross section at threshold \checkmark Neutral baryon: $\sigma = 0$
 - ✓ Charged baryon: $\sigma \neq 0$
- Effective FF define as $|G(s)| = \frac{1}{2}$

 $\int \frac{|G_M|^2 + 1/2\tau |G_E|^2}{1 + 1/2\tau}$, proportional to $\sqrt{\sigma_{Born}}$

Baryon pair production

- Cross section at threshold
 - \checkmark Charged: $\sigma \neq 0$
 - \checkmark Neutral: $\sigma = 0$
- $G_E \& G_M$ form factor
- Search for resonance

Baryon form factor @ BESIII

Threshold enhancement

32

Size of proton

Relative phase between G_E and G_M

• Complex G_E and G_M $\checkmark G_E = |G_E|e^{i\Phi_E}, G_M = |G_M|e^{i\Phi_M}$

- $\checkmark \text{ Relative phase: } \Delta \Phi = \Phi_{\text{E}} \cdot \Phi_{\text{M}}$
- A non-zero phase has polarization effect on the baryons $P_y \propto \sin \Delta \Phi$
- The angular distribution of daughter baryon from hyperon weak decay is:

$$\checkmark rac{d\sigma}{d\Omega} \propto \mathbf{1} + lpha_A P_y \cdot \widehat{q}$$

- $\checkmark \alpha_{\Lambda}$: asymmetry parameter
- $\checkmark \hat{q}$: unit vector along the daughter baryon in hyperon rest frame

Relative phase between $G_{\rm E}$ and $G_{\rm M}$

• Helicity amplitude (PLB 772, 16)

$$\mathcal{W}(\xi) = \mathcal{T}_{0}(\xi) + \eta \mathcal{T}_{5}(\xi) - \alpha_{\Lambda}^{2} \left(\mathcal{T}_{1}(\xi) + \sqrt{1 - \eta^{2}} \cos(\Delta \Phi) \mathcal{T}_{2}(\xi) + \eta \mathcal{T}_{6}(\xi) \right) + \alpha_{\Lambda} \sqrt{1 - \eta^{2}} \sin(\Delta \Phi) \left(\mathcal{T}_{3}(\xi) - \mathcal{T}_{4}(\xi) \right).$$

 $\mathscr{T}_0(\xi) = 1$

 $\mathscr{T}_{1}(\xi) = \sin^{2}\theta\sin\theta_{1}\sin\theta_{2}\cos\phi_{1}\cos\phi_{2} + \cos^{2}\theta\cos\theta_{1}\cos\theta_{2}$

$$\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$$

- $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$
- $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$

 $\mathscr{T}_5(\xi) = \cos^2 \theta$

 $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2.$

$$\left|\frac{G_E}{G_M}\right| = 0.94 \pm 0.16(stat.) \pm 0.03(sys.) \pm 0.02(\alpha_A)$$
$$\Delta \Phi = 42^\circ \pm 16^\circ(stat.) \pm 8^\circ(sys.) \pm 6^\circ(\alpha_A)$$

Summary

- The charmonium provide a good platform for studying not only excited nucleon states, but also excited hyperons.
- With largest charmonium samples in the world, a new chance for N*, Λ^* , Σ^* , Ξ^* .
- Baryon form factor G_E and G_M , threshold enhancement ?

	Previous	BESIII	BESIII Goal
J /ψ	58M @ BES	1.2B	10 B
ψ(3686)	28M @CLEO	0.5B	3B
ψ(3770)	0.8fb ⁻¹ @CLEO	2.9fb ⁻¹	20fb ⁻¹
χ _{cj}	$\psi(3686) \rightarrow \gamma \ \chi_{CJ} \ @ \ (9\text{-}10) \ \%$		
η _C (1S)	$J/\psi \rightarrow \gamma \ \eta_C(1S) \ @ \ 1.7 \ \%$		

Baryon form factor @ BESIII

