

Spectroscopy of Baryons at LHCb

Liming Zhang (Tsinghua University) On behalf of the LHCb Collaboration

LHCb detector and performance

LHCb detector and performance

LHCb

 $m_{\mu^+\mu^-} [MeV/c^2]$

Vertexing

[New J. Phys. 15 (2013) 053021] [EPJ C73 (2013) 2431]

[PRL 111 (2013) 101805]

Int. J. Mod. Phys. A 30 (2015) 1530022

Impact parameter:	$\sigma_{IP} = 20 \ \mu \mathrm{m}$
Proper time:	$\sigma_{\tau} = 45 \text{ fs for } B_s^0 \rightarrow J/\psi \phi \text{ or } D_s^+ \pi^-$
Momentum:	$\Delta p/p = 0.4 \sim 0.6\% (5 - 100 \text{GeV}/c)$
Mass :	$\sigma_m = 8 \ { m MeV}/c^2$ for $B o J/\psi X$ (constrainted ${ m m}_{J/\psi}$)
RICH $K - \pi$ separation:	$\epsilon(K o K) \sim 95\%~~{ m mis}$ -ID $\epsilon(\pi o K) \sim 5\%$
Muon ID:	$\epsilon(\mu ightarrow \mu) \sim 97\%~~$ mis-ID $\epsilon(\pi ightarrow \mu) \sim 1-3\%$
ECAL:	$\Delta E/E = 1 \bigoplus 10\% / \sqrt{E(\text{GeV})}$

LHCb advantage and disadvantage

- Advantage at LHCb:
 - Huge b-production cross-section

 $\sigma(pp \rightarrow b\overline{b}X) \approx 72 \ \mu b \ @7 \ TeV \approx 144 \ \mu b \ @13 \ TeV \ in LHCb$ acceptance PHYS. REV. LETT. 118, 052002 (2017)

- Can also access Λ_b^0 , B_s^0 , B_c^+ B⁰: Λ_b :B_s = 4:2:1
- Disadvantage at LHCb:
 - Efficiency of one track ~50% (not good for large number of finial states)
 - **Inefficiency for** K_s^0 , Λ^0 , γ

4

LHCb collected luminosity

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

 $\sigma(pp \rightarrow b\overline{b}X) \approx 72 \ \mu b \ @7 \ TeV \ vs \approx 144 \ \mu b \ @13 \ TeV \ in \ LHCb \ acceptance$

Expect Yield(Run1+2) \approx 4.5 Yield(Run1)

Two methods for spectroscopy

- Direct production in *pp* collisions
 - Combine a heavy flavour hadron with one or more light particles
 - Pros: High statistics, in principle can study all states
 - Cons: Large combinatorial background, hard to determine J^P

- Production by a heavier particle decay
 - Usually with amplitude analysis
 - Pros: Low background, Better determination of J^P
 - Cons: Low cross-section, limited states and limited J

Two methods for spectroscopy

- Direct production in pp collisions □ \mathcal{Z}_{cc}^{++} , $\Omega_{c}^{*} \rightarrow \mathcal{Z}_{c}K$
 - All excited B, $\Xi_b^* \to \Xi_b \pi$; $\Lambda_b K$

- Production by a B or D decays
 - □ X(3872) J^P
 - □ Z_c(4430)
 - □ X(4140)
 - □ P_c(4450), P_c(4380)
 - D D_(s)J

Charmed and bottom baryons

- 25 charmed baryons observed
 - Missing many Σ_c^* ?
- 11 bottom baryons observed
- Bottom are very similar to charmed baryons

Bottom baryons

✓ Direct production

E_b baryon spectroscopy

- Numbers of excited *b*-baryons have already been discovered
 - $\Box \ \mathcal{Z}_b^*(5945)^0 \to \mathcal{Z}_b^- \pi^+ \ [\text{CMS'12}]$
 - □ $\mathcal{Z}_{b}^{\prime}(5935)^{-}, \mathcal{Z}_{b}^{*}(5955)^{-} \rightarrow \mathcal{Z}_{b}^{0}\pi^{-}$ [LHCb'15]

Neutral Ξ_h^*

 $\Box \mathcal{Z}_b^{\prime 0}$ not yet observed

12/16/18

E_b baryon spectroscopy

- Numbers of excited *b*-baryons have already been discovered
 - $\Box \ \mathcal{Z}_b^*(5945)^0 \rightarrow \mathcal{Z}_b^- \pi^+ \ [\text{CMS'12}]$
 - □ $\mathcal{Z}_{b}^{\prime}(5935)^{-}, \mathcal{Z}_{b}^{*}(5955)^{-} \rightarrow \mathcal{Z}_{b}^{0}\pi^{-}$ [LHCb'15]
 - $\Box \mathcal{Z}_b^{\prime 0}$ not yet observed
- More higher excited states are expected to be above $\Lambda_b^0 K$ threshold

Observation of a new \mathcal{Z}_b^{**-} **state**

 7.9σ
 New method using SL gives 15x yield than that in HD, largely increase search power of excited bottom hadrons

• Hadronic $\Lambda_h^0 \to \Lambda_c^+ \pi^-$:

Resolution: 2 MeV

- Semileptonic (SL)
 - $\Lambda_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_\mu$
 - Resolution: ~18 MeV
 - Yields ~15 larger
 - **Ω** 25σ

• Semileptonic (SL) $\Xi_b^0 \to \Xi_c^+ \mu^- X \bar{\nu}_\mu$ • 9.2 σ

PRL 121 (2018) 072002

With hadronic mode

The \mathcal{Z}_{h}^{**-} properties

$$\begin{split} M(\Xi_b^{**-}) &- M(\Lambda_b^0) = 607.3 \pm 2.0 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \, \mathrm{MeV}/c^2, \\ \Gamma &= 18.1 \pm 5.4 \, (\mathrm{stat}) \pm 1.8 \, (\mathrm{syst}) \, \mathrm{MeV}/c^2, \\ M(\Xi_b^{**-}) &= 6226.9 \pm 2.0 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \pm 0.2 (\Lambda_b^0) \, \mathrm{MeV}/c^2, \end{split}$$

Mass peak position is consistent between the three decay channels

Production ratios are measured with SL modes

Quantity	7+8 TeV	13 TeV
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Lambda_b^0})\mathcal{B}(\Xi_b^{**-}\to\Lambda_b^0K^-)$	$(3.0\pm0.4\pm0.4) imes10^{-3}$	(3.4 \pm 0.4 \pm 0.4) $ imes$ 10 ⁻³
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Xi_b^0})\mathcal{B}(\Xi_b^{**-}\to \Xi_b^0\pi^-)$	(47 \pm 9 \pm 7) $ imes$ 10 ⁻³	(22 \pm 6 \pm 3) $ imes$ 10 ⁻³

Consistent with 1P states

Bing Chen et. al. PRD 98,

(2018) 031502(R)

Σ_b spectroscopy: Observation of $\Sigma_b (6097)^{\pm}$

- $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ combined with π^{\pm} from PV
- $p_T(\pi^{\pm}) > 1$ GeV to suppress backgd
- Relativistic BW convoluted with resolutions of 1.0, 1.1, 2.4 MeV for Σ_b, Σ_b^{*}, Σ_b(6097)

Quantity	Value [MeV]
$m(\Sigma_b(6097)^-)$	$6098.0 \pm 1.7 \pm 0.5$
$m(\Sigma_b(6097)^+)$	$6095.8 \pm 1.7 \pm 0.4$
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm 4.2 \pm 0.9$
$\Gamma(\Sigma_b(6097)^+)$	$31.0 \pm 5.5 \pm 0.7$

 Σ_b^{\pm} and $\Sigma_b^{*\pm}$ parameters are measured, 5x more precise than the previous CDF values

Charmed baryons

- ✓ Direct production
- ✓ From B decay

Status

B.Chen, K.-W. Wei and A. Zhang, EPJA 51 (2015) 82

- experimental observations / nonrelativistic *heavy quark-light diquark* model

• $\mathcal{B}(\Lambda_b \to D^0 p \pi^-)$ measured with 1fb⁻¹ Amplitude analysis with 3 fb-1 LHCb-PAPER-2013-056 PRD 89 (2014) 032001

LHCb-PAPER-2016-061 JHEP 05 (2017) 030

Amplitude analysis $\Lambda_b \rightarrow D^0 p \pi^-$

LHCb-PAPER-2016-061 JHEP 05 (2017) 030

Clean sample with ~11K signal events

fit in different phase space regions to reduce complexities

	Phase space region				
Yield	Full	1	2	3	4
$\Lambda_b^0 \to D^0 p \pi^-$	11212 ± 126	2250 ± 61	1674 ± 46	3141 ± 63	4750 ± 79
Combinatorial	14024 ± 224	4924 ± 132	968 ± 78	2095 ± 96	4188 ± 127
Partially rec.	4106 ± 167	1344 ± 96	321 ± 64	691 ± 75	1204 ± 96
Signal in box	10 233	2061	1500	2803	4261
Background in box	1616	598	89	192	427

Amplitude analysis $\Lambda_b \rightarrow D^0 p \pi^-$

 $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$

 $NR_{n\pi^{-}}(1/2^{+})$

	Λ _c (2880)	$J^P = \frac{5}{2}^+$ confirmed
		$m(\Lambda_c(2880)^+) = 2881.75 \pm 0.29(\text{stat}) \pm 0.07(\text{syst})^{+0.14}_{-0.20}(\text{model}) \text{ MeV},$ $\Gamma(\Lambda_c(2880)^+) = 5.43^{+0.77}_{-0.77}(\text{stat}) \pm 0.29(\text{syst})^{+0.75}_{-0.20}(\text{model}) \text{ MeV}$
•	Λ _c (2860)	$J^{P} = \frac{3}{2}^{+} \text{ confirmed}$
		$m(\Lambda_c(2860)^+) = 2856.1^{+2.0}_{-1.7}(\text{stat}) \pm 0.5(\text{syst})^{+1.1}_{-5.6}(\text{model}) \text{ MeV},$ $\Gamma(\Lambda_c(2860)^+) = 67.6^{+10.1}_{-8.1}(\text{stat}) \pm 1.4(\text{syst})^{+5.9}_{-20.0}(\text{model}) \text{ MeV}.$
	Λ _c (2940)	$J^P = \frac{3}{2}^-$ favored, $(\frac{3}{2}^+, \frac{5}{2}^-, \frac{5}{2}^+ ~~3\sigma)$

 $m(\Lambda_c(2940)^+) = 2944.8^{+3.5}_{-2.5}(\text{stat}) \pm 0.4(\text{syst})^{+0.1}_{-4.6}(\text{model}) \text{ MeV}$ $\Gamma(\Lambda_c(2940)^+) = 27.7^{+8.2}_{-6.0}(\text{stat}) \pm 0.9(\text{syst})^{+5.2}_{-10.4}(\text{model}) \text{ MeV}.$

Observation of exited Ω_c states

LHCb, PRL 118 (2017) 182001

- Excited Λ_c^+ , Σ_c , Ξ_c states have been reported but no excited Ω_c^0 states were observed before LHCb
- 3 fb⁻¹ Run I + 0.3 fb⁻¹ Run II pp collisions data
- Decay: $\Omega_c^{**0} o \Xi_c^+ K^-$, $\Xi_c^+ o p K^- \pi^+$

Observation of exited Ω_c states

LHCb, PRL 118 (2017) 182001

• 5 narrow states & evidence for 6th broader state at high mass

Interpretation of exited Ω_c states

NERSIT

[[]]

Interpretation of exited Ω_c states

■ Some theorists also consider 3050 & 3090 are DE molecular

Excited Ω_c states

A HONSE

- LHCb observed 5 narrow states (+ a possible wide one) in 2017
- Belle confirmed the first four states this year

The measured masses are consistent with LHCb values

Measurement of Ω_c^0 lifetime

- Charm-hadron lifetimes probe highorder corrections in HQE
- Charm-baryon lifetimes are not well measured, in particular Ω_c^0 (69 ± 12 fs) Precision 17%

Current measurements

$$\tau_{\Xi_{c}^{+}} > \tau_{\Lambda_{c}^{+}} > \tau_{\Xi_{c}^{0}} > \tau_{\Omega_{c}^{0}}$$

- LHCb uses b → c semileptonic decays to avoid bias on charm
 - Signal: $\Omega_b^- \to \Omega_c^0 (\to p K^- K^- \pi^+) \mu^- \overline{\nu}_{\mu} X$
 - Control: $B \to D^+ (\to K^- \pi^+ \pi^+) \mu^- \overline{\nu}_{\mu} X$

PRL 121 (2018) 092003

Yields: $\Omega_c^0 \mu^-$: 978 ± 60 (~10 times larger than any previous sample used for τ)

PV

Signal and control channels

- Use $b \rightarrow c$ semileptonic decays to avoid bias from trigger and offline selections
 - Muon trigger

 $t(\Omega_c^0)=d\cdot$

- Tracks well separated from PV
- Signal: $\Omega_b^- \to \Omega_c^0 (\to pK^-K^-\pi^+)\mu^-\overline{\nu}_{\mu}X$

 Ω_c^0

• Control: $B \to D^+ (\to K^- \pi^+ \pi^+) \mu^- \overline{\nu}_{\mu} X$

Lifetime fits

- Fit background-subtracted distribution obtained with sPlot technique
- Signal PDF:

$$S(t_{rec}) = f(t_{rec}) \exp\left(-\frac{t_{rec}}{\tau_{fit}} + \frac{t_{rec}}{\tau_{sim}}\right) \beta(t_{rec})$$

Binned Template
from simulation
 \checkmark Corresponding
to efficiency

• Check fit procedure with D^+ events Consistent with PDG value: 1040 ± 7 fs If without $\beta(t_{\rm rec})$ correction, about 1.2 σ below the PDG value

Ω_c^0 lifetime result

^{12/16/18} Verifications are needed from the other experiments and LHCb study using prompt Ω_c^0 27

Exotic baryons

Discovery of pentaquark states

A HONS

PRL 115, 072001 (2015)

• Two pentaquark states observed in 26,000 $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays

Full amplitude fits to $\Lambda_b^0 \rightarrow J/\psi p\pi^-$

- THOM ST
- Significance of $P_c(4380)^+$, $P_c(4450)^+$, $Z_c(4200)^-$ take together is 3.1 σ including syst.
- First evidence!

PRL 117, 082003 (2016)

Observation of $\Xi_h^- \rightarrow J/\psi \Lambda K^-$

- Strange pentaquark ($udsc\overline{c}$) predicted in [PRL 105, 232001 (2010)]
- Can be searched for in the Ξ_h^- decay [PRC 93, 065203 (2016)]

Expect ~1700 signals, amplitude analysis is in good progress

 $m(J/\psi \Lambda K^{-})$ [MeV/ c^{2}]

5700

Weakly decaying *b*-flavoured pentaquarks PRD 97 (2018) 032010

 Skyrme model: heavy quarks give tightly bound pentaquark

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

 Search for mass peaks below strong decay threshold

Mode	Quark content	Decay mode	Search window
Ι	$\overline{b}duud$	$P^+_{B^0p} \to J/\psi K^+\pi^- p$	$4668{-}6220~{\rm MeV}$
II	$b\overline{u}udd$	$P^{-1}_{\Lambda^0_{\mu}\pi^-} \to J/\psi K^-\pi^- p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P^{+^{o}}_{\Lambda^{0}_{b}\pi^{+}} \rightarrow J/\psi K^{-}\pi^{+}p$	4668–5760 ${\rm MeV}$
\mathbf{IV}	$\overline{b}suud$	$P_{B_{\circ}^{0}p}^{+} \to J/\psi \phi p$	5055–6305 ${\rm MeV}$

• Upper limit on production ratio $\sigma \cdot \mathcal{B}$ wrt $\Lambda_b^0 \to J/\psi K^- p$

$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

Weakly decaying *b*-flavoured pentaquarks PRD 97 (2018) 032010

• No evidence for signal, 90% CL limits on $R < 10^{-2} - 10^{-3}$

Summary

- LHCb have made contributions to charm baryon spectroscopy
- LHCb shows unique power to explore heavier states:
 including excited *b*-baryons, doubly-heavy baryons & exotic baryons
- 欢迎理论家给我们指导,寻找底重子激发态 □ $\Lambda_b^*, \Sigma_b^* \rightarrow \overline{B}p$? □ $\Xi_b^* \rightarrow \Xi_b \pi^+ \pi^-, \overline{B}\Lambda$?

谢谢!

Search for dibaryon state

• A dibaryon state [cd][ud][ud]could be produced in Λ_b^0 decays to final state $\Lambda_c^+ \pi^- p\bar{p}$

L. Maiani, et al. PLB 750 (2015) 37

• LHCb has discovered the decay $\Lambda^0_b \to \Lambda^+_c \pi^- p \bar{p}$

LHCb-PAPER-2018-005 arXiv:1804.09617 submitted to PLB

Search for dibaryon state

Ratio of branching fractions

LHCb-PAPER-2018-005 arXiv:1804.09617 submitted to PLB

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$$

No obvious dibaryon peak in $m(\Lambda_c^+\pi^-p)$ spectra

BESIII data samples

Observation of $\Lambda_b^0 \rightarrow \chi_{c(1,2)} p K^-$

- Search for $P_c(4450)^+$ in $\Lambda_b^0 \rightarrow [\chi_{c(1,2)}p]K^-$ decays \Rightarrow Test hypothesis of kinematic rescattering effect
 - PRD 92 (2015) 071502
- First step: observe the decays, measure \mathcal{B}
- Use $\chi_{c(1,2)} \rightarrow J/\psi\gamma$, constrain $J/\psi\gamma$ mass to known χ_{c1} mass

12/16/18

Cross sections of $e^+e^- \rightarrow \omega/\phi \chi_{cJ}$ (J=0,1,2)

e⁺e⁻→ ωχ_{c0}:

Fit with a single BW Mass = $4226 \pm 8 \pm 6$ MeV Width = $39 \pm 12 \pm 2$ MeV Significance > 9σ

$e^+e^- \rightarrow \omega \chi_{c2}$:

Agree with from $\psi(4415)$ with BR=(1.4 ± 0.5) × 10⁻³ (sol. I), or BR=(6 ± 1) × 10⁻³ (sol. II)

While BESIII measures $e^+e^- \rightarrow \phi \chi_{cJ}$ at4.6GeV*PRD97, 032008 (2018)*

•
$$\sigma (e^+e^- \rightarrow \phi \chi_{c0}) < 5.4 \text{ pb}$$

- $\sigma (e^+e^- \to \phi \chi_{c1}) < (4.2^{+1.7}_{-1.0} \pm 0.3) \text{ pb}$
- $\sigma (e^+e^- \to \phi \chi_{c2}) < (6.7^{+3.4}_{-1.7} \pm 0.5) \text{ pb}$

Need data beyond 4.6 GeV to check structure in $\omega \chi_{c1}$ and $\phi \chi_{cJ}$

Y(4220) and the new Y's

The Z_c Family at \Re

Which is the nature of these states?

Different decay channels of the same observed states? Other decay modes?

$e^+e^- ightarrow \psi(2S)\pi^+\pi^-$ Dalitz-plot $_{ t PRD 96 (2017) 032004}$

SINGH,

RS/7

LHCb results on tetra and pentaquarks

• Confirmation of Z(4430)

PRL 112 (2014) 222002

 Observation of two charmonium pentaquarks

PRL 115 (2015) 072001

• Observation of four $J/\psi\phi$ structures

PRL 118 (2017) 022003

 Evidence of exotic contribution in Cabibbosuppressed decays

PRL 117 (2016) 082003

12/16/18

X(5568) – puzzle ?

D0 Run II, 10.4 fb1

Fit with background shape fixed Background

RL 117, 022003

DATA

z

70

Seen by D0 with **4**. **8** σ significance $m = 5567.8 \pm 2.9 \,(\text{stat})^{+0.9}_{-1.9} \,(\text{syst}) \,\,\text{MeV}/c^2$ $\Gamma = 21.9 \pm 6.4 \,(\text{stat})^{+5.0}_{-2.5} \,(\text{syst}) \,\,\text{MeV}/c^2$

Doubly charmed baryons: motivation

 Doubly charmed baryons are not observed or established

- Doubly heavy baryons' mass and decay width to test QCD motivated models
- Baryons with two heavy quarks probe the QCD potential in a different way than baryons with a single heavy quark [hep-ph/9811212]
 - HQET: two charm quarks considered as a heavy diquark, doubly heavy baryon similar to a heavy meson $\overline{Q}q$
 - Such diquark can naturally extend to $\overline{Q}\overline{q}\overline{q} = cc\overline{q}\overline{q}$ exotic system

Theoretical interpretations

- $\mathcal{Z}_{h}^{**}(6227)^{-}$: good candidate for 1P 5/2⁻ or 3/2⁻ state
 - Not 2S state, since 2S state doesn't decay into $A_b K$
- $\Sigma_b(6097)^{\pm}$: good candidates for 1P 5/2⁻ or 3/2⁻ state

Bing Chen, Xiang Liu arxiv:1810.00389

RS/

Measurement of Ω_c^0 lifetime

- Charm-hadron lifetimes probe highorder corrections in HQE
- Charm-baryon lifetimes are not well measured, in particular Ω_c^0 (69 ± 12 fs) Precision 17%

Current measurements

$$\tau_{\Xi_{c}^{+}} > \tau_{\Lambda_{c}^{+}} > \tau_{\Xi_{c}^{0}} > \tau_{\Omega_{c}^{0}}$$

- LHCb uses b → c semileptonic decays to avoid bias on charm
 - Signal: $\Omega_b^- \to \Omega_c^0 (\to p K^- K^- \pi^+) \mu^- \overline{\nu}_{\mu} X$
 - Control: $B \to D^+ (\to K^- \pi^+ \pi^+) \mu^- \overline{\nu}_{\mu} X$

PRL 121 (2018) 092003

Yields: $\Omega_c^0 \mu^-$: 978 ± 60 (~10 times larger than any previous sample used for τ)

Ω_c^0 lifetime result

49

^{12/16/18} Verifications are needed from the other experiments and LHCb study using prompt Ω_c^0