

Λ_c^+ physics at BESIII

Pei-Rong Li (李培荣)

On behalf of the BESIII Collaboration

LanZhou University

2018.12.15 @ LanZhou

Outline

- Introduction to the lightest charm baryon Λ_c^+
 - BESIII results on its production and decays

- $\square BF(\Lambda_{c}^{+} \rightarrow eX) \qquad : arXiv: 1805.09060(PRL accepted)$
- $\Lambda_c^+ \Lambda_c^-$ pair cross section : PRL 120,132001(2018).
- Summary & prospect

2018/12/15

Renaissance on the charmed heavy baryon

- Before 2014, the charmed baryons have been produced and studied at many experiments, notably fixed-target experiments (such as FOCUS and SELEX) and e⁺e⁻ B-factories (ARGUS, CLEO, BABAR, and BELLE).
- Large uncertainties in experiment=>Retarder development in theory.
- Afterwards, more extensive measurements on charmed baryons are performed at BESIII, BELLE and LHCb.
 - The absolute BF measurements at BESIII and BELLE.
 - The observation of the DCS mode $\Lambda_c^+ \rightarrow pK^+\pi^-$ at BELLE.
 - The observation of the doubly charmed baryon Ξ_{cc}^{++} at LHCb.
 - These experimental progresses have revoked the activities in the theoretical efforts. 2018/12/15

The charmed baryon family

- Singly charmed baryons • Established ground states: $\Lambda_{c}^{+}, \Sigma_{c}, \Xi_{c}^{(\prime)}, \Omega_{c}$ • Excited states are being explored Doubly charmed baryons(Ξ_{cc}^{++}) observed recently. No observations of triply charmed baryons. Λ_{c}^{+} decay only weakly, many recent experimental progress since 2014. $\Sigma_{\rm c}$: B($\Sigma_{\rm c} \rightarrow \Lambda_{\rm c}^+ \pi$)~100%, B($\Sigma_{\rm c} \rightarrow \Lambda_{\rm c}^+ \gamma$)? Ξ_{c} : decay only weakly; no absolute BF measured, most relative to $\Xi^- \pi^+(\pi^+)$.
- Ω_c:decay only weakly; no absolute BF measured.

Λ_{c}^{+} : The lightest charmed baryon spectroscopy

- Most of the charmed baryons will eventually decay to Λ_c^+ .
- The Λ⁺_c is one of important tagging hadrons in c-quark counting in the productions at high energy experiment.
- Also important input to Λ_b (including Ξ_{cc}^{++}) physics as Λ_b decay preferentially to Λ_c . ==>Important input to B physics and V_{ub} calculations.
- Λ_c^+ may provide more powerful test on internal dynamics than D/Ds does !
- Naïve quark model picture: a heavy quark (c) with an unexcited spin-zero diquark (*u-d*). Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark(HQET).

Λ_c^+ weak decays

• Contrary to charmed meson, W-exchange contribution is important.(No color suppress and helicity suppress)

- Phenomenology aim at explain data and predict important observables.
- Calculate what they can(HQET, factorization)+parametrize what they cannot + some non-perturbations extracted from data=> explain and predict.
 2018/12/15

BESIII data taking $(a) \Lambda_c^+ \Lambda_c^-$ threshold

- In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance!
- Measurement using the threshold pair-productions via e⁺e⁻ annihilations is unique: <u>the most</u> <u>simple and straightforward.</u>
- ~ $106 \times 10^3 \Lambda_c^+ \Lambda_c^-$ pairs make sensitivity to 10^{-3} .
- First time to systematically study Λ_c^+ at threshold.
- Collect more Λ⁺_c data are in the schedule.
 2018/12/15

Energy(GeV)	lum.(pb ⁻¹)
4.575	47.67
4.580	8.54
4.590	8.16
4.600	567.93

Production near threshold and tag technique

- E_{cms} -2 $M_{\Lambda c}$ =26MeV only!
- $\Lambda_c^+ \Lambda_c^-$ produced in pairs with no additional accompany hadrons.
 - $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda^+_c \Lambda^-_c$
- Clean backgrounds and well constrained kinematics.
- Typically, two ways to study Λ_c^+ decays:
 - Single Tag(ST): detect only one of the $\Lambda_c^+ \Lambda_c^-$.
 - =>Relative higher backgrounds
 - =>Higher efficiencies
 - =>Full reconstruction
 - Double Tag(DT): detec both of $\Lambda_c^+ \Lambda_c^-$
 - =>Smaller backgrounds.
 - =>Missing technique.
 - =>Lower efficiencies.

 e^+

 π^{-}

π

 Λ_c^+

 Λ_c^-

Several popular variables

- $\Delta E = E_{\Lambda c} E_{beam}$
- Beam-Constrained-Mass;

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\rm Ac}|^2}$$

- $E_{\text{miss}} = E_{\text{beam}} E_{\text{h}}$ • $\vec{p}_{\text{miss}} = \vec{p}_{\text{Ac}} - \vec{p}_{\text{h}}$
- $\vec{p}_{\Lambda c} = -\vec{p}_{tag} \cdot \sqrt{E_{beam}^2 m_{\Lambda c}^2}$
- $U_{\text{miss}} = E_{\text{miss}} |\vec{p}_{\text{miss}}|$
- $M_{\rm miss} = \sqrt{E_{\rm miss}^2 |\vec{p}_{\rm miss}|^2}$
 - \hat{p}_{tag} is the direction of the momentum of the singly tagged Λ_c .
 - $E_{\rm h}(p_{\rm h})$ are the energy(momentum) of h which are measured in e⁺e⁻ system.
 - $m_{\Lambda_c^+}$ is the mass of the Λ_c^+ quoted from the PDG. 2018/12/15

Λ_c^+ reconstruction at BESIII

- The BFs are extracted via the double-tag technique.
- BF is determined independent of $N_{\Lambda_c^+\Lambda_c^-}$ and the systematic due to the reconstruction of ST side to be canceled.
- ~15400 ST yields and ~1000 DT yields 2018/12/15

Results of 12 Λ_c^+ hadronic decay BFs

PRI 116 052	001 (2016)			
1 KL 110, 032	Mode	This work (%)	PDG (%)	BELLE B
	pK ⁰ s	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
	$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
	$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
	$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
	$pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	567pb ⁻¹ @ 4.6 GeV
	$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
	$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
	$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
	$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
	$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
	$\Sigma^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
	$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

- No absolute measurement (Model independently) on Λ_c^+ BFs at threshold after Λ_c^+ discovered(30 years ago).
- A least square global fit taking into account correlations over different modes are performed to improve the precision.
- The precision of $B(pK^-\pi^+)$ are comparable with Belle's
- The precisions of Λ_c decay rates is reaching to the level of charmed mesons!

N as a byproduct determined to be $(105.9 \pm 4.8 \pm 0.5) \times 10^3$

HFLAV Fit to world BF data

- A fitter to constrain the 12 hadronic BFs and 1 SL BF, based on all the existing experimental data
- Correlated systematics are fully taken into account

Eur. Phys. J. C77, 895 (2017)

The least overall χ^2 /ndf=30.0/23=1.3

Precise $B(pK^{-}\pi^{+})$ is useful for constrain V_{ub} determined via baryonic mode

Experimental precision reaches of the charmed hadrons

	Golden hadronic mode	δB/B	Golden SL mode	δΒ/Β
\mathbf{D}^0	$B(K\pi) = (3.88 \pm 0.05)\%$	1.3%	$B(Kev) = (3.55 \pm 0.05)\%$	1.4%
D^+	$B(K\pi\pi)=(9.13\pm0.19)\%$	2.1%	$B(K^0ev) = (8.83 \pm 0.22)\%$	2.5%
D _s	B(KKpi)=(5.39±0.21)%	3.9%	$B(\phi ev) = (2.49 \pm 0.14)\%$	5.6%
Λ_{c}	$B(pK\pi)=(5.0\pm1.3)\%(PDG2014)$ =(6.8±0.36)% (BELLE)	26% 5.3%	$B(\Lambda ev) = (2.1 \pm 0.6)\% (PDG2014) = (3.63 \pm 0.43)\% (BESIII)$	29% 12%
	= (5.84 ± 0.35) % (BESIII) = (6.46 ± 0.24) % (HFAG)	6.0% 3.7%	$=(3.18\pm0.32)\%$ (HFAG)	10%

- The precisions of Ac decay rates is reaching to the level of charmed mesons!
- More data input will further constrain the HFLAV fit.
- However, search for more unknown modes are important 2018/12/15

Important Input for b physics

stringent Fragmentation Function of b/c quark to baryon

[Eur. Phys. J. C12, 225 (2000); Eur. Phys. J. C 16, 597 (2000); Phys. Rev. D 85, 032008 (2012), Phys. Rev.D 66, 091101 (2002).]

• Fragmentation Function (FF) is an important probe in experiment to test and calibrate QCD theory.

PhysRevD.85.032008

TABLE IV. Systematic uncertainties on the absolute scale of $f_{\Lambda_h}/(f_u + f_d)$.

Source	Error (%)
Bin-dependent errors	2.2
$\mathcal{B}(\Lambda^0_b \xrightarrow{i} D^0 p X \mu^- \bar{\nu})$	2.0
Monte Carlo modelling	1.0
Backgrounds	3.0
Tracking efficiency	2.0
$\Gamma_{\rm sl}$	2.0
Lifetime ratio	2.6
PID efficiency	2.5
Subtotal	6.3
$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$	26.0
Total	26.8

Now B($pK^-\pi^+$) are still dominated

CKM matrix element V_{ub}

Singly Cabibbo-Suppressed Decays of $\Lambda_c^+ \rightarrow p \pi^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^+ K^-$

- **ST method:** $\Lambda_c^+ \rightarrow pK^-\pi^+$ as ref. mode
- First observation of SCS decay of $\Lambda_c^+ \rightarrow p \pi^+ \pi^-$
- Improved measurement on the SCS decays $\Lambda_c^+ \rightarrow pK^+K^-$
- $\Lambda_c^+ \rightarrow p\phi$ are sensitive to non-factorable contributions from C diagrams

PRL117,232002(2016)

 $\Lambda_{c}^{+} \rightarrow p\phi$: test large-N_c expansion

• Charmed meson decays

 $a_1 = c_1(\mu) + c_2(\mu) (1/N_c + \chi_1(\mu)),$ $a_2 = c_2(\mu) + c_1(\mu) (1/N_c + \chi_2(\mu)),$

If $\chi_1 = \chi_2 = 0$, naïve factorization If $\chi_1 = \chi_2 \approx -1/N_c$, large-N_c factorization

- $\Lambda_c^+ \rightarrow p\phi$ proceeds **only** through internal W-emission C diagram.
- Input BF \Rightarrow $|a_2|=0.45\pm0.03$, Nc \approx 7, close to $a_2(m_c)\approx$ -0.44(from theory)
- 1/N_c is also applicable to charmed baryon sector.
- BESIII measurement are consistent with previous measurement.

arXiv:1801.08625

Singly Cabibbo-Suppressed Decays of $\Lambda_c^+{\rightarrow} p\pi^0$ and $\Lambda_c^+{\rightarrow} p\eta$

• These modes have not been measured before.

2018/12/15

- Predicted BFs vary under different theoretical models(SU(3) symmetry and FSI)
- $B(\Lambda_c^+ \to p\eta) >> B(\Lambda_c^+ \to p\pi^0)$ in the SU(3) flavor symmetry generated by u,d and s
- Nonfactorizable terms contribute constructively to $p\eta$ and destructively to $p\pi^0$
- Their relative size is essential to understand the interference of different non factorizable diagrams.

SCS Decays of $\Lambda_c^+ \rightarrow p\pi^0$ and $\Lambda_c^+ \rightarrow p\eta$

2018/12/15

TABLE 2. The data of the $\mathbf{B}_c \to \mathbf{B}_n M$ decays.

Branching ratios	Data [4, 7]	Branching ratios	Data [4, 7]
$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0)$	3.16 ± 0.16	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.70 ± 0.23
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	1.30 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda K^+)$	6.1 ± 1.2
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.24 ± 0.10	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	5.2 ± 0.8
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.29 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta)$	12.4 ± 3.0
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.50 ± 0.12	$\mathcal{R} = rac{\mathcal{B}(\Xi_c^0 o \Lambda ar{K}^0)}{\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)}$	0.420 ± 0.056
$10^4B(\Lambda_c^+ \rightarrow p\pi^0) =$	0.80±1.36	?	

 $10^3 \mathbf{BR}_{th}$

 3.7 ± 0.6

 1.0 ± 0.6

 6.1 ± 1.1

 3.1 ± 0.6

 20.3 ± 0.9

 9.3 ± 0.9

 2.1 ± 1.5

 4.2 ± 1.9

 12.6 ± 2.1

 5.4 ± 1.0

 12.6 ± 2.1

 5.9 ± 1.0

 31.3 ± 1.6

 13.1 ± 1.6

 $10^3 BR_{EX}$

 12.4 ± 1.0

 7.0 ± 2.3

 12.9 ± 0.7

 5.9 ± 1.0

 31.6 ± 1.6

 13.0 ± 0.7

BRs of Cabibbo-allowed decays

channel

 $\Xi_c^0\to \Sigma^+ K^-$

 $\Xi_c^0 \rightarrow \Sigma^0 \bar{K}^0$

 $\Xi_c^0 \rightarrow \Xi^0 \pi^0$

 $\Xi_c^0 \rightarrow \Xi^0 \eta$

 $\Xi_c^0 \rightarrow \Xi^- \pi^+$

 $\Xi_c^0\to\Lambda^0\bar{K}^0$

 $\Xi_c^+ \to \Sigma^+ \bar{K}^0$

 $\Xi_c^+ \to \Xi^0 \pi^+$

 $\Lambda_c^+ \to \Sigma^+ \pi^0$

 $\Lambda_c^+ \to \Sigma^+ \eta$

 $\Lambda_c^+ \to \Sigma^0 \pi^+$

 $\Lambda_c^+ \to \Xi^0 K^+$

 $\Lambda_c^+ \to p \bar{K}^0$

 $\Lambda_c^+ \to \Lambda^0 \pi^+$

BRs of Cabibbo-suppressed decay:

	channel	$10^4 \mathbf{BR}_{th}$	$10^4 \mathbf{BR}_{EX}$
	$\Xi_c^0\to \Sigma^+\pi^-$	2.2 ± 0.4	-
	$\Xi_c^0\to \Sigma^0\pi^0$	2.8 ± 0.3	-
	$\Xi_c^0\to \Sigma^0\eta$	1.0 ± 0.2	-
	$\Xi_c^0\to \Sigma^-\pi^+$	11.7 ± 0.5	-
	$\Xi_c^0\to \Xi^0 K^0$	6.2 ± 1.0	-
	$\Xi_c^0\to \Xi^- K^+$	9.8 ± 0.4	-
	$\Xi_c^0 \to p K^-$	2.3 ± 0.4	-
_	$\Xi_c^0 ightarrow n \bar{K}^0$	7.8 ± 1.3	-
	$\Xi_c^0\to\Lambda^0\pi^0$	1.0 ± 0.3	-
	$\Xi_c^0\to\Lambda^0\eta$	2.7 ± 0.3	-
	$\Xi_c^+ \to \Sigma^+ \pi^0$	20.3 ± 2.0	-
	$\Xi_c^+ \to \Sigma^+ \eta$	8.2 ± 1.9	-
	$\Xi_c^+ \to \Sigma^0 \pi^+$	23.5 ± 2.3	-
	$\Xi_c^+ \to \Xi^0 K^+$	9.8 ± 3.3	-
	$\Xi_c^+ o p \bar{K}^0$	29.2 ± 5.2	-
_	$\Xi_c^+\to\Lambda^0\pi^+$	5.1 ± 2.1	-
	$\Lambda_c^+ \to \Sigma^+ K^0$	11.4 ± 2.0	-
	$\Lambda_c^+ \to \Sigma^0 K^+$	5.7 ± 1.0	5.2 ± 0.8
	$\Lambda_c^+ \to p \pi^0$	1.3 ± 0.7	0.8 ± 1.3
	$\Lambda_c^+ \to p\eta$	13.0 ± 1.0	12.4 ± 3.0
	$\Lambda_c^+ \to n\pi^+$	6.1 ± 2.0	-
	$\Lambda_c^+ \to \Lambda^0 K^+$	6.4 ± 0.9	6.1 ± 1.2

2018/12/15

From Chao-Qiang Geng' report at Wuhan

Observation of $\Lambda_c^+ \rightarrow n K_s^0 \pi^+$

• First direct measurement of Λ_c^+ decay involving the neutron in the final state.

• Peaking background from $\Lambda_c^+ \rightarrow \Sigma^+ (\rightarrow n\pi^+) \pi^+\pi^-$

- 2-D fitting extract 83 ± 11 net signals => $B[\Lambda_c^+ \rightarrow nK_s^0 \pi^+] = (1.82 \pm 0.23 \pm 0.11)\%$
- $\mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{n}K^{0}\pi^{+}]/\mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{p}K^{-}\pi^{+}] = 0.62 \pm 0.09; \ \mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{n}K^{0}\pi^{+}]/\mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{p}K^{0}\pi^{0}] = 0.97 \pm 0.16$
- A test of final state interactions and isospin symmetry in the charmed baryon sector. [PRD93, 056008 (2016)]

Study of $\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+} (\pi^{0})$

First observation of a large-rate forgotten channel $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^0$ (CF decay)

Constrained variables:

$$M_{n\pi^{-}} = \sqrt{(E_{\text{beam}} - E_{\pi^{+}\pi^{+}(\pi^{0})})^{2} - |\vec{p}_{\Lambda_{c}^{+}} - \vec{p}_{\pi^{+}\pi^{+}(\pi^{0})}|^{2}}$$
$$M_{n} = \sqrt{(E_{\text{beam}} - E_{\pi^{+}\pi^{+}\pi^{-}(\pi^{0})})^{2} - |\vec{p}_{\Lambda_{c}^{+}} - \vec{p}_{\pi^{+}\pi^{+}\pi^{-}(\pi^{0})}|^{2}}$$
$$2018/12/15$$

PLB 772, 388 (2017)

- Λ_c^+ decay involving the neutron in the final state(missing technique). Less known in experiment.
- $B(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+ \pi^0) = (2.11 \pm 0.33 \pm 0.14)\%$
- $B(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+) = (1.81 \pm 0.17 \pm 0.09)\%$ more precise than old result $(2.3 \pm 0.4)\%$
- $B[\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+]/B[\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-]$ =0.42±0.05±0.02 better precision than rhe previous ratio 0.53±0.15±0.07

W-exchange-only process $\Lambda_c^+ \rightarrow \Xi^{(*)0} K^+$

- $\Lambda_c^+ \rightarrow \Xi^{0(*)} K^+$ decay only through W-exchange.
- W-exchange are non-factorable in theoretic calculation.
- Large cancellation both in S-wave and P-wave.
- This measurement helps in calibration of the Wexchange process in the charmed baryon sector.

The previous measurements have poor precision.

	Dagari	Maccurred $\mathcal{B}(\Lambda_c^+ \to \Xi^{(*)0} K^+)$	Measured	Predicted
	Decay	Measured $\frac{1}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}$	$\mathcal{B}(\Lambda_c^+ o \Xi^{(*)0} K^+)$	$\mathcal{B}(\Lambda_c^+ \to \Xi^{(*)0} K^+)$
				2.6×10^{-3} [4]
				3.6×10^{-3} [6]
Ξ	${}^{0}K^{+}$	$(7.8 \pm 1.8)\%$ [18] CLE	$(5.0 \pm 1.2) \times 10^{-3} \ [24]$	3.1×10^{-3} [10]
				1.0×10^{-3} [14]
				1.3×10^{-3} [15]
		$(5.3 \pm 1.0)\%$ [18] CLEO		5.0×10^{-3} [4]
Ξ	$^{*0}K^{+}$	$(0.3 \pm 3.2)\%$ [10] CLLC	- (4.0 ± 1.0) × 10 ⁻³ [24, 20]	0.8×10^{-3} [16]
2018/ <u>12/1</u>	15	$(9.3 \pm 3.2) / 0 [19, 2]$ ARGU	S	0.6×10 ⁻³ [17]

W-exchange-only process
$$\Lambda_c^+ \rightarrow \Xi^{(*)0}K^+$$

 π K. **Double tag and missing** $\Xi^{0(*)}$ to increase the detection p efficiency. e⁺ Low backgrounds because the anti-strangeness of K⁺ PLB 783,200 (2018) X $\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (5.90 \pm 0.86 \pm 0.39) \times 10^{-3}$ $\mathcal{B}(\Lambda_c^+ \to \Xi(1530)^0 \bar{K^+}) = (5.02 \pm 0.99 \pm 0.31) \times 10^{-3}$ ST $M_{\rm BC}$ sideband Data Events/(10.0 MeV/c²) 60 total fit 2nd-order polynomial 6.4σ First absolute measurement, using world largest on-10.3σ 40 threshold data at \sqrt{s} =4.6GeV 20 **Improved precision** No model can accommodate the both rates 1.2 1.4 1.6

2018/12/15

 $M_{\rm miss}({\rm GeV}/c^2)$

 $\Lambda_c^+ \to \Sigma^+ \eta, \Sigma^+ \eta'$

Figure 1. Representative tree level diagrams of decays of $\Lambda_c^+ \to \Sigma^+ \eta$ and $\Lambda_c^+ \to \Sigma^+ \eta'$.

- Decay through internal W-emission and W-exchange.
- Both are non-factorable in theoretic calculation.
- Large variations in theory: $B(\Lambda_c^+ \to \Sigma^+ \eta) = (0.11 0.94)\%, B(\Lambda_c^+ \to \Sigma^+ \eta') = (0.1 1.28)\%$
- $\Lambda_c^+ \rightarrow \Sigma^+ \eta$ is measured by CLEO with BF=(0.70±0.23)% (~33% uncertainty)
- $\Lambda_c^+ \to \Sigma^+ \eta'$ is not observed yet.

2018/12/15

 $\Lambda_c^+ \to \varSigma^+ \eta$, $\varSigma^+ \eta'$

1811.08028

	2.5σ	3.2σ	$\mathcal{B}(a)$ N	$V_{\alpha} \varepsilon_{\alpha} \mathcal{B}(\pi^0 \to \gamma \gamma)$	
Events/(2.5 MeV/c ²)	Events/(2.5 MeV/c ²) Events/(2.5 MeV/c ²) Events/(2.5 MeV/c ²)	$10 \xrightarrow{(b)} \Lambda_{c}^{+} \rightarrow \Sigma^{+} \eta'$ $5 \xrightarrow{(b)} 10 \xrightarrow{(c)} 10$	$R_{ac} = \frac{\mathcal{B}(a)}{\mathcal{B}(c)} = \frac{N_b}{R_b}$ $R_{bd} = \frac{\mathcal{B}(b)}{\mathcal{B}(d)} = \frac{N_b \varepsilon_d \mathcal{B}(a)}{N_d \varepsilon_b \mathcal{B}(a)}$	$\frac{\sqrt{2}}{N_c \varepsilon_a \mathcal{B}(\eta \to \gamma \gamma)}$ $\frac{\omega \to \pi^+ \pi^- \pi^0) \mathcal{B}(\pi)}{(\eta' \to \pi^+ \pi^- \eta) \mathcal{B}(\eta)}$	$rac{0}{ ightarrow \gamma\gamma)}{ ightarrow \gamma\gamma)}$
		$\begin{array}{c} 0 \\ 2.25 \\ 2.26 \\ 2.27 \\ 2.28 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2.29 \\ 2.3 \\ 2$			
	$M_{BC} (GeV/c^2)$	$M_{BC} (GeV/c^2)$	Decay mode	N_{i}	$arepsilon_i$ (%)
4eV/c²)	$60 = (c) \Lambda_c^+ \rightarrow \Sigma^+ \pi^0 \qquad \qquad$	$100 (d) \Lambda_{c}^{+} \rightarrow \Sigma^{+} \omega \qquad A$	(a) $\Lambda_c^+ \to \Sigma^+ \eta$	-14.6 ± 6.6	7.80
(2.0 N	40		(b) $\Lambda_c^+ \to \Sigma^+ \eta'$	13.0 ± 4.8	4.61
Events/	20		(c) $\Lambda_c^+ \to \Sigma^+ \pi^0$	122.4 ± 14.5	8.98
-	₀ [↓] +↓ ⁺ +↓+ ⁺ ++++ ⁺ / ₊ − − [↓] ↓	0	(d) $\Lambda_c^+ \to \Sigma^+ \omega$	135.4 ± 20.4	7.83
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$rac{\mathcal{B}(\Lambda_c^+)}{\mathcal{B}(\Lambda_c^+)}$	$\frac{\Sigma^+ \eta}{\Sigma^+ \pi^0} = 0.35 \pm 0.16 \pm 0$	$.03 \frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)} < 0.58$	• $\Lambda_c^+ \to \Sigma^+ \eta$ is s still compatib	smaller than CI le within uncer	LEO but tainty.
$rac{{\cal B}(\Lambda_c^+)}{{\cal B}(\Lambda_c^+)}$	$\frac{\Delta\Sigma^+\eta'}{\Delta\Sigma^+\omega} = 0.86 \pm 0.34 \pm 0.000$.07 $\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)} < 1.2$	• $\Lambda_c^+ \to \Sigma^+ \eta'$ is	s measured for	first time.
$rac{{\cal B}(\Lambda_c^+}{{\cal B}(\Lambda_c^+)}$	$\frac{1}{1-\Sigma^+\eta'} = 3.5 \pm 2.1 \pm 0.$	4	• Our measure most theoretic	ment contradic cal calculations	et with

	Decay mode	Körner [5]	Sharma 3	Zenczykowski 4	Ivanov 6	CLEO [12]	This work	
	$\Lambda_c^+\! ightarrow\!\Sigma^+\eta$	0.16	0.57	0.94	0.11	$0.70{\pm}0.23$	$0.41{\pm}0.20~({<}0.68)$	
2018/12/15	$\Lambda_c^+\!\rightarrow\!\Sigma^+\eta'$	1.28	0.10	0.12	0.12	-	$1.34{\pm}0.57~({<}1.9)$	26

TABLE 2. The data of the $\mathbf{B}_c \to \mathbf{B}_n M$ decays.

Branching ratios	Data [4, 7]	Branching ratios	Data [4, 7]
$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0)$	3.16 ± 0.16	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.70 ± 0.23
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	1.30 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda K^+)$	6.1 ± 1.2
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.24 ± 0.10	$10^4 \mathcal{B}(\Lambda_c^+ o \Sigma^0 K^+)$	5.2 ± 0.8
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.29 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta)$	12.4 ± 3.0
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.50 ± 0.12	$\mathcal{R} = rac{\mathcal{B}(\Xi_c^0 o \Lambda ar{K}^0)}{\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)}$	0.420 ± 0.056
10(D(A + 0))	0.00 1 20		

 $10^3 \mathbf{BR}_{th}$

 3.7 ± 0.6

 1.0 ± 0.6

 6.1 ± 1.1

 3.1 ± 0.6

 20.3 ± 0.9

 9.3 ± 0.9

 2.1 ± 1.5

 4.2 ± 1.9

 12.6 ± 2.1

 5.4 ± 1.0

 12.6 ± 2.1

 5.9 ± 1.0

 31.3 ± 1.6

 13.1 ± 1.6

 $10^4 B(\Lambda_c^+ \rightarrow p\pi^0) = 0.80 \pm 1.36$

channel

 $\Xi_c^0 \rightarrow \Sigma^+ K^-$

 $\Xi_c^0\to \Sigma^0 \bar{K}^0$

 $\Xi_c^0 \rightarrow \Xi^0 \pi^0$

 $\Xi_c^0
ightarrow \Xi^0 \eta$

 $\Xi_c^0 \rightarrow \Xi^- \pi^+$

 $\Xi_c^0 \rightarrow \Lambda^0 \bar{K}^0$

 $\Xi_c^+ \to \Sigma^+ \bar{K}^0$

 $\Xi_c^+ \to \Xi^0 \pi^+$

 $\Lambda_c^+ \to \Sigma^+ \pi^0$

 $\Lambda_c^+ \to \Sigma^+ \eta$

 $\Lambda_c^+ \to \Sigma^0 \pi^+$

 $\Lambda_c^+ \to \Xi^0 K^+$

 $\Lambda_c^+ \to p \bar{K}^0$

 $\Lambda_c^+ \rightarrow \Lambda^0 \pi^+$

BRs of Cabibbo-allowed decays

	BRs of	Cabibbo-su	ppressed	decay:
--	--------	------------	----------	--------

6.1 ± 1.2	channel	$10^4 \mathbf{BR}_{th}$	$10^4 \mathbf{BR}_{EX}$
5.2 ± 0.8	$\Xi_c^0\to \Sigma^+\pi^-$	2.2 ± 0.4	-
5.2 ± 0.8	$\Xi_c^0\to\Sigma^0\pi^0$	2.8 ± 0.3	-
12.4 ± 3.0	$\Xi_c^0\to \Sigma^0\eta$	1.0 ± 0.2	-
0.420 ± 0.056	$\Xi_c^0\to \Sigma^-\pi^+$	11.7 ± 0.5	-
	$\Xi_c^0\to \Xi^0 K^0$	6.2 ± 1.0	-
	$\Xi_c^0\to \Xi^- K^+$	9.8 ± 0.4	-
	$\Xi_c^0 ightarrow p K^-$	2.3 ± 0.4	-
$10^3 \mathbf{BR}_{EX}$	$\Xi_c^0 ightarrow n \bar{K}^0$	7.8 ± 1.3	-
-	$\Xi_c^0\to\Lambda^0\pi^0$	1.0 ± 0.3	-
-	$\Xi_c^0 o \Lambda^0 \eta$	2.7 ± 0.3	-
-	$\Xi_c^+\to \Sigma^+\pi^0$	20.3 ± 2.0	-
-	$\Xi_c^+\to \Sigma^+\eta$	8.2 ± 1.9	-
-	$\Xi_c^+ \to \Sigma^0 \pi^+$	23.5 ± 2.3	-
-	$\Xi_c^+ \to \Xi^0 K^+$	9.8 ± 3.3	-
-	$\Xi_c^+ o p \bar{K}^0$	29.2 ± 5.2	-
	$\Xi_c^+\to\Lambda^0\pi^+$	5.1 ± 2.1	-
12.4 ± 1.0	$\Lambda_c^+ \to \Sigma^+ K^0$	11.4 ± 2.0	-
7.0 ± 2.3	$\Lambda_c^+ \to \Sigma^0 K^+$	5.7 ± 1.0	5.2 ± 0.8
12.9 ± 0.7	$\Lambda_c^+ \to p \pi^0$	1.3 ± 0.7	0.8 ± 1.3
5.9 ± 1.0	$\Lambda_c^+ \to p\eta$	13.0 ± 1.0	12.4 ± 3.0
31.6 ± 1.6	$\Lambda_c^+ \to n\pi^+$	6.1 ± 2.0	-
13.0 ± 0.7	$\Lambda_c^+ \to \Lambda^0 K^+$	6.4 ± 0.9	6.1 ± 1.2

2018/12/15

From Chao-Qiang Geng' report at Wuhan

Absolute BF for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$

- Benchmark channel via the CF transition c→sl⁺v_l
- BESIII measured the electronic mode $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ by missing the neutrino.
- Provides stringent test for nonperturbative aspects of the theory of strong interaction.
- Important input for implementing and calibrating the LQCD calculations.

Study on $\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu}$

- Double tag and missing neutrino.
- Peaking backgrounds from muon-pion mis-ID
- $B[\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu}] = (3.49 \pm 0.46 \pm 0.27)\%$ =>improved precision, =>first absolute measurements.
- $\Gamma[\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu}] / \Gamma[\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e] = 0.96 \pm 0.16 \pm 0.04$ 2018/12/15 =>compatible with unity

PLB 767, 42 (2017)

$\Lambda_c \rightarrow \Lambda l^+ \nu_l$ Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses

Stefan Meinel

Department of Physics, University of Arizona, Tucson, Arizona 85721, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 1 December 2016; published 21 February 2017)

PRL118(2017)082001

Input the measured BFs from BESIII

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0363(38)(20), & \ell = e, \\ 0.0349(46)(27), & \ell = \mu. \end{cases}$$

The first LQCD calculations on BFs and form factors

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0380(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = e, \\ 0.0369(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = \mu, \end{cases}$$

The inclusive channel $\Lambda_c^+ \rightarrow \Lambda + X$

- The inclusive process mediated by the *c-s* transition.
- Essential input in the calculation of the Λ_c^+ life time.
- Useful in understanding the heavier charmed baryons, esp. the less known doubleor triple-charm baryons.
- Current PDG: BF($\Lambda_c^+ \rightarrow \Lambda + X$)=(35±11)% with large uncertainty.
- The sum of know exclusive modes only accounts for (24.5±2.1)% => need better understanding of the gap between exclusive and inclusive rates.
- Comparison with K+X will shed light on the Λ_c^+ internal dynamics.
- Search for the CPV by measuring the asymmetry.

$$\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}$$
2018/12/15

The inclusive channel $\Lambda_c^+ \rightarrow \Lambda + X$

Comparison with K+X will shed light on the internal dynamics 2018/12/15

- In the ST modes of $\Lambda_c^+ \rightarrow pK^-p^+$ and pK_s^0 , to measure the probability of find a Λ in the final states.
- Extract yields from 2D distributions in bins of *p*–|*cosθ*|
- Data-driven 2D efficiency correction using several Λ control samples.

 $\mathcal{B}(\Lambda_{C}^{+} \to \Lambda + X) = (38.2^{+2.8}_{-2.2} \pm 0.8)\%$ (excl. rate (24.5 ± 2.1)% observed, indicates ~1/3 BFs are unknown)

•
$$A_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.4)\%$$

(No CPV is observed.)

 $\Lambda_c^+ \rightarrow e^+ \nu_e + X$

- Current PDG: BF($\Lambda_c^+ \rightarrow e + X$)=(4.5±1.7)%.
- Large rate, but also with large uncertainty
- Tagged with $\Lambda_c^+ \rightarrow pK^-\pi^+$ and pK_s^0

$$\Rightarrow \mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (3.95 \pm 0.34 \pm 0.09)\%$$

$$\stackrel{\Rightarrow}{\longrightarrow} \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e)} = (91.9 \pm 12.5 \pm 5.4)\%$$

• The $\Lambda l^+ \nu_l$ dominate the $l^+ + X => \mathcal{B} (pKl^+ \nu_l) \sim 10^{-3}$.

Result	$\Lambda_c^+ \to X e^+ \nu_e$	$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\bar{\Gamma}(D \to X e^+ \nu_e)}$
BESIII	3.95 ± 0.35	1.26 ± 0.12
MARK II [7]	4.5 ± 1.7	1.44 ± 0.54
Effective-quark Method $[9, 10]$		1.67
Heavy-quark Expansion $[11]$		1.2

arXiv:1805.09060

2018/12/15

Why $\Lambda_c^+ \rightarrow \Lambda_e^+ \nu_e$ are dominated?

The cross-section of baryon pair

The Born cross section of the reaction $e^+e^- \rightarrow \gamma^* \rightarrow B\bar{B}$ can be parameterized in terms of electromagnetic form factors:

$$\sigma_{B\bar{B}}(q) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau} |G_E(q)|^2]$$

- Baryon velocity $\beta = \sqrt{1 4m_B^2 c^4/q^2}, \tau = q^2/(4m_B^2 c^4)$
- For charged *B*, the Coulomb factor C will results in a non-zero cross section at threshold
- $e^+e^- \rightarrow p\bar{p}$: an enhancement and wide-range plateau in the line-shape
- $e^+e^- \rightarrow \Lambda \bar{\Lambda}$: non-zero cross section near threshold
- It can be anticipate that Λ_c^+ has a similar behaviour with proton
- Belle collaboration has measured the cross section of $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ using ISR technique PRL 101, 172001 (2008)

Cross-section and EMFF of $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$ near threshold

- The cross sections are measured with unprecedented precision
- Enhanced cross section of reaction $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ near threshold is discerned for the first time
- The Coulomb enhanced factor?

Phys. Rev. Lett. 120, 132001 (2018).

FIG. 3. Angular distribution after efficiency correction and results of the fit to data at $\sqrt{s} = 4574.5$ MeV (a) and 4599.5 MeV (b).

$$|G_E/G_M|^2(1-\beta^2) = (1-\alpha_{\Lambda_c})/(1+\alpha_{\Lambda_c}).$$

- One of the most basic observables that intimately related to the internal structure of the nucleon.
- One of the most challenging questions in contemporary physics is why and how quarks are confined into hadrons.
- The electromagnetic form factors (EMFFs) have been a powerful tool in understanding the structure of nucleons.

$\sqrt{s} \; ({\rm MeV})$	$lpha_{\Lambda_c}$	$ G_E/G_M $
4574.5	$-0.13 \pm 0.12 \pm 0.08$	$1.14 \pm 0.14 \pm 0.07$
4599.5	$-0.20 \pm 0.04 \pm 0.02$	$1.23 \pm 0.05 \pm 0.03$

Other efforts from experimental side

•
$$\Lambda_c^+ \to \Lambda \pi^+ \eta$$

- Weak decay asymmetries of $\Lambda_c^+ \rightarrow pK_s^0$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$ and $\Sigma^0 \pi^+$
- Inclusive measurement of $\Lambda_c^+ \to K_s^0 X, KX$

• $\Lambda_c^+ \rightarrow ne^+ v_e$ is under investigate even very challenging.

Summary

- Threshold data at BESIII opens a new door to direct measurements of the decays \rightarrow precise study of Λ_c decays
 - kinematics does not allow additional particle produced along with the $\Lambda_c^+ \Lambda_c^-$ pair
 - fully reconstruct the pairs and take their yield ratios to measure the BFs:
 - Iow backgrounds and high detection efficiency
- **Era of precision study of the** Λ_c decays:
 - provide more data for theorists to develop more reliable models
 - precise measurement of the W-exchange and W-internal-emission only process: to test the quark-diquark configuration important to understand the non-factorizable contribution
 - explore as-yet-unmeasured channels and understand full picture of intermediate structures
- We are proposing to take a larger data set; a golden opportunity to thoroughly improve our knowledge on Ac decays

Prospect Charm Baryons data sample at BESIII

Energy	physics highlight	Current data # of events	Expected final data # of events
		or integrated luminosity	or integrated luminosity
1.8 - 2.0 GeV	R values cross-sections	N/A	Scan: 3 energy points
2.0 - 3.1 GeV	R values cross-sections	Scan: 20 energy points	No requirement
${ m J}/\psi$ peak	Light Hadron & Glueball Charmonium decay	5.0 billion	10.0 billion
$\psi(3686)$ peak	Light hadron& Glueball Charmonium decay	0.5 billion	3.0 billion
$\psi(3770)$ peak	D^0/D^\pm decays Form-factor/CKM decay constant	$2.9 { m ~fb^{-1}}$	20.0 fb^{-1}
3.8 - 4.6 GeV	R value XYZ/Open charm	Scan: 105 energy points	No requirement
4.180 GeV	D_s decay XYZ/Open charm	$3.1 { m ~fb^{-1}}$	$6.0 { m ~fb^{-1}}$
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	Scan: 12.0 fb^{-1}	Scan: 30.0 fb ⁻¹ 10 MeV step/0.5 fb ⁻¹ /point 30 energy points
$4.60 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	0.56 fb^{-1}	$1.0 {\rm ~fb^{-1}}$
4.64 GeV	Λ_c/XYZ	N/A	5.0 fb^{-1}
4.65 GeV	Λ_c/XYZ	N/A	$0.2 { m ~fb^{-1}}$
4.70 GeV	Λ_c/XYZ	N/A	$0.65 {\rm ~fb^{-1}}$
4.80 GeV	Λ_c/XYZ	N/A	$1.0 { m fb^{-1}}$
4.90 GeV	Λ_c/XYZ	N/A	$1.3 { m fb^{-1}}$
$\Sigma_c^+ \bar{\Lambda}_c^-$ 4.74 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Sigma_c \bar{\Sigma}_c$ 4.91 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Xi_c \bar{\Xi}_c \ 4.95 \ \text{GeV}$	Charm Baryons	N/A	$1.0 { m fb^{-1}}$

Precision Prospects (1)

Push the precisions to the level of those of D/Ds mesons. Hadronic decays

- PWA analysis of hadronic decays: hadron spectroscopy
- studies of the modes involving $n/\Sigma/\Xi$ particles
- more Cabbibo-suppressed modes, esp. W-exchange only process
 SL decays :
- so far, only $\Lambda e^+ v_e$ mode is measured; How about pK⁻ $e^+ v_e$?
- many more SL modes can be established

	golden mode	δB/B	SL	δΒ/Β
D0	B(Kpi)=(3.88±0.05)%	1.3%	B(K e ν)=(3.55±0.05)%	1.4%
D+	B(Kpipi)=(9.13±0.19)%	2.1%	2.5%	
Ds	B(Kkpi)=(5.39±0.21)%	3.9%	B(phi e ν)=(2.49±0.14)%	5.6%
Λ_{c}	B(pKpi)= (5.0 ± 1.3) % (PDG2014) = (6.8 ± 0.36) % (BELLE) = (5.84 ± 0.35) % (BESIII) = (5.84 ± 0.18) % (new	26% 5.3% 6.0% 3.0%	$B(\Lambda ev) = (2.1 \pm 0.6)\%(PDG2014)$ = (3.63 ± 0.43)% (BESIII) = (3.63 ± 0.20)% (new BESIII)	29% 12% 5.4%
201	8/12/15 DESIII)			40

Precision Prospects (2)

- Prospects with the proposed new Λ_c^+ data set
 - ✓ precise measurement of the W-exchange and W-internalemission only process: to test the quark-diquark configuration *important to understand the non-factorizable contribution*
 - ✓ establishment of more SL and neutron modes: nlv, pKlv, ...
 - \checkmark search for more decay modes unexplored yet in experiment

A good chance for BESIII to systematically enhance our knowledge on Λ_c^+ decays (to the level of D/D_s mesons)

- Better understanding of baryonic structure
- many new observations
- refresh the precisions in old data

Competition from Belle & BelleII

- Belle tags ~36K Λ_c^+ , while BESIII now tags 15K Λ_c^+ (567/pb@4.6GeV)
- By middle of 2019, Belle-II will have 5/ab data, 5x of BELLE data;
 → 180K Λ⁺_c tagging; 12x BESIII data
- We shall have 10x more Λ_c^+ pairs ASAP
- Many precise measurements at BESIII will reach to the level of systematic dominated

→ BESIII has advantages on backgrounds and systematics

Energies go up to 5GeV

The charmed baryon spectroscopies

If BEPCII can access energies up to 5GeV, we can study the Λ_c , Σ_c and Ξ_c at threshold.

- Study on the isospin triplet Σ_c
- First absolute measurements of Ξ_c decays

44

Partiale Width of decay of Σ_c^+

(MeV)

Decay	Expt.	HHChPT	Tawfiq	Ivanov	Huang	Albertus
	[3]	[10]	et al. $\left[25\right]$	et al. [26]	et al. [27]	et al. [28]
$\Sigma_c^{++} \to \Lambda_c^+ \pi^+$	$1.89\substack{+0.09\\-0.18}$	input	1.51 ± 0.17	2.85 ± 0.19	2.5	2.41 ± 0.07
$\Sigma_c^+ \to \Lambda_c^+ \pi^0$	< 4.6	$> 2.3^{+0.1}_{-0.2}$	1.56 ± 0.17	3.63 ± 0.27	3.2	2.79 ± 0.08
$\Sigma_c^0 \to \Lambda_c^+ \pi^-$	$1.83\substack{+0.11 \\ -0.19}$	$1.9\substack{+0.1 \\ -0.2}$	1.44 ± 0.16	2.65 ± 0.19	2.4	2.37 ± 0.07
$\Sigma_c(2520)^{++} \to \Lambda_c^+ \pi^+$	$14.8^{+0.3}_{-0.4}$	$14.5_{-0.8}^{+0.5}$	11.77 ± 1.27	$\overline{21.99\pm0.87}$	8.2	17.52 ± 0.75
$\Sigma_c(2520)^+ \to \Lambda_c^+ \pi^0$	< 17	$15.2^{+0.6}_{-1.3}$			8.6	17.31 ± 0.74
$\Sigma_c(2520)^0 \to \Lambda_c^+ \pi^-$	$15.3^{+0.4}_{-0.5}$	$14.7^{+0.6}_{-1.2}$	11.37 ± 1.22	21.21 ± 0.81	8.2	16.90 ± 0.72

■ Precise determination of $\Gamma(\Sigma_c^+ \to \Lambda_c^+ \pi^0)$ can be used for for testing heavy quark symmetry and chiral symmetry *Wise; Yan et al.; Burdman, Donoghue ('92)* ■ measurements of $\Sigma_c^+ \& \Sigma_c(2520)$ widths by Belle [PRD89, 091102 (2014)]: $\Gamma(\Sigma_c^+ \to \Lambda_c^+ \pi^0)$ is not easy for Belle; BESIII has potential to improve it.

BESIII will search for the EM decay

Decay	HHChPT	Ivanov	Bañuls	Tawfiq	Dey	Majethiya	Fayyazuddin	Aliev
	+QM	et al.	et al.	et al.	et al.	et al.	et al.	et al.
$\Sigma_c^+ \to \Lambda_c^+ \gamma$	88	60.7 ± 1.5		87	98.7	60.1 - 85.6	89.0	

(keV)

Ξ_c (usc): 3-star particle in PDG

No absolute branching fractions have been measured/calculated

	Mode	Fraction $(\Gamma; /\Gamma)$	1	Mode	Fraction (Γ_i / Γ_j
No abso o $\Xi^- \pi$	blute branching fractions have been m ⁺ . Cabibbo-favored ($S = -2$) decays	reasured. The following are branching – relative to $\Xi^- \pi^+$	\sim No at $= -2$	bsolute branching fractions have been () decays — relative to $\mathcal{Z}^- \pi^+$	measured.The following are
Γ_1	$p \ge K_S^0$	0.087 ± 0.021	Б	$pK^-K^-\pi^+$	0.34 ± 0.04
Γ2	$\Lambda \overline{K}^0 \pi^+$			-* 0	0.54 ± 0.04
Γ3	$\Sigma(1385)^+\overline{K}^0$	1.0 ± 0.5	Γ_2	$pK^{-}K^{-}(892)^{0}$	0.21 ± 0.05
4	ΛK^{-} 2 π^{+}	0.323 ± 0.033	Γ_3	$pK^-K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04
5	$\Lambda \overline{K}^{*}(892)^{0}\pi^{+}$	~ 0.16			
6	Σ (138.	Vory limited by	nonvlodao a	on their decay	28
7	$\Sigma^+ K^- \pi^+$	very minieu ki	lowledge (Jii then decay	5
		•			
0	$\frac{2\pi k}{M_{P}}$	ave onnortunity	to firstly fi	Il un the deca	v tahlee 📗
9	Σ^{r_K} We h	ave opportunity	to firstly fi	Ill up the deca	y tables
9 79 710	$\Sigma^{0}K^{-2}\pi^{+}$ We h	ave opportunity	to firstly fi	Ill up the deca	y tables
9 10 11	$\sum_{\substack{\Sigma^0 K^- 2 \pi \\ \Xi^0 \pi^+ \\ \Xi^- 2 \pi^+}} We h$	ave opportunity	to firstly fi	Ill up the deca $\mathbf{z}^{-\pi^+}$	y tables
5 79 710 711 712	$\sum_{\substack{\Sigma^0 K^- 2 \pi \\ \Xi^0 \pi^+ \\ \Xi^- 2 \pi^+ \\ \Xi(1530)^0 \pi^+ }} We h$	ave opportunity	to firstly fi	Ill up the decay $z^{-\pi^+}$ $z^{-\pi^+\pi^+\pi^-}$	y tables DEFINEDAS 3.3 ± 1.4
9 10 11 12 13	$\begin{array}{c} \Sigma^{*K} (We h \\ \Sigma^{0}K^{-}2\pi \\ \Xi^{0}\pi^{+} \\ \Xi^{-}2\pi^{+} \\ \Xi(1530)^{0}\pi^{+} \\ \Xi^{0}\pi^{+}\pi^{0} \end{array}$	ave opportunity 0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7	to firstly fi Γ8 Γ9 Γ10	$ \begin{array}{c} $	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024
5 9 10 11 12 13 14	$\begin{array}{c} \Sigma^{0}K^{-}2\pi\\ \Sigma^{0}K^{-}2\pi\\ \Xi^{-}2\pi^{+}\\ \Xi^{-}2\pi^{+}\\ \Xi^{-}(1530)^{0}\pi^{+}\\ \Xi^{0}\pi^{+}\pi^{0}\\ \Xi^{0}\pi^{-}2\pi^{+} \end{array}$	ave opportunity 0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5	to firstly fi	Ill up the decay $z^{-\pi^+}$ $z^{-\pi^+\pi^+\pi^-}$ Ω^-K^+ $z^{-}e^+\nu_e$	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1
9 10 11 12 13 14 15	We h $\Sigma^{0}K^{-2}\pi^{+}$ $\Xi^{0}\pi^{+}$ $\Xi^{-2}\pi^{+}$ $\Xi(1530)^{0}\pi^{+}$ $\Xi^{0}\pi^{+}\pi^{0}$ $\Xi^{0}\pi^{-2}\pi^{+}$ $\Xi^{0}e^{+}\nu_{e}$	ave opportunity 0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5 $2.3^{+0.7}_{-0.8}$	to firstly firstly firstly firstly firstly firstly first fi	$ \begin{array}{c} z^{-}\pi^{+} \\ \overline{z}^{-}\pi^{+}\pi^{+}\pi^{-} \\ \Omega^{-}K^{+} \\ \overline{z}^{-}e^{+}\nu_{e} \\ \overline{z}^{-}e^{+}\mu_{e} \end{array} $	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1 1.0 ± 0.5
9 10 11 12 13 14 15 16	We h $\Sigma^{0}K^{-2}\pi^{+}$ $\Xi^{0}\pi^{+}$ $\Xi^{-2}\pi^{+}$ $\Xi(1530)^{0}\pi^{+}$ $\Xi^{0}\pi^{+}\pi^{0}$ $\Xi^{0}\pi^{-2}\pi^{+}$ $\Xi^{0}e^{+}\nu_{e}$ $\Omega^{-}K^{+}\pi^{+}$	ave opportunity 0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5 $2.3^{+0.7}_{-0.8}$ 0.07 ± 0.04	to firstly firstly firstly firstly firstly first firs	$ \begin{array}{c} \exists T \text{ up the deca} \\ \exists \overline{T} \pi^{+} \\ \exists \overline{T} \pi^{+} \pi^{+} \pi^{-} \\ \Omega^{-} K^{+} \\ \exists \overline{T} e^{+} \nu_{e} \\ \exists \overline{T} e^{+} \nu_{e} \\ \exists \overline{T} e^{+} \text{ anything} \end{array} $	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1 1.0 ± 0.5
9 10 11 12 13 14 15 16 abibbcc 17	We h $\Sigma^{0}K^{-2}\pi$ $\Xi^{0}\pi^{+}$ $\Xi^{-2}\pi^{+}$ $\Xi(1530)^{0}\pi^{+}$ $\Xi^{0}\pi^{+}\pi^{0}$ $\Xi^{0}\pi^{-2}\pi^{+}$ $\Xi^{0}e^{+}\nu_{e}$ $\Omega^{-}K^{+}\pi^{+}$ o-suppressed decays – relative to Ξ^{-}	ave opportunity 0.55 ± 0.16 DEFINEDAS1 < 0.10 2.3 ± 0.7 1.7 ± 0.5 $2.3^{+0.7}_{-0.8}$ 0.07 ± 0.04 π^+	to firstly firstly firstly firstly firstly first firs	$ \frac{\Xi^{-}\pi^{+}}{\Xi^{-}\pi^{+}\pi^{+}\pi^{-}} $ $ \Omega^{-}K^{+} $ $ \Xi^{-}e^{+}\nu_{e} $ $ \Xi^{-}\ell^{+} \text{ anything} $ bbo-suppressed decays – relative to Ξ	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1 1.0 ± 0.5 π^+
9 10 11 12 13 14 15 16 16 16 17 17	We h $\Sigma^{0}K^{-2}\pi$ $\Xi^{0}\pi^{+}$ $\Xi^{-2}\pi^{+}$ $\Xi(1530)^{0}\pi^{+}$ $\Xi^{0}\pi^{+}\pi^{0}$ $\Xi^{0}\pi^{-2}\pi^{+}$ $\Xi^{0}e^{+}\nu_{e}$ $\Omega^{-}K^{+}\pi^{+}$ pswippessed decays - relative to Ξ^{-} $pK^{-}\pi^{+}$	ave opportunity 0.55 \pm 0.16 DEFINEDAS1 < 0.10 2.3 \pm 0.7 1.7 \pm 0.5 2.3 ^{+0.7} _{-0.8} 0.07 \pm 0.04 π^+ 0.21 \pm 0.04 0.116 \pm 0.030	to firstly firstly firstly firstly firstly first firs	$ \begin{array}{c} \Xi^{-}\pi^{+} \\ \Xi^{-}\pi^{+}\pi^{+}\pi^{-} \\ \Omega^{-}K^{+} \\ \Xi^{-}e^{+}\nu_{e} \\ \Xi^{-}e^{+} \\ e^{+} \\ and \\ D^{b} bo-suppressed decays - relative to E \\ \Xi^{-}K^{+} \end{array} $	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1 1.0 ± 0.5 π^+ 0.028 ± 0.006
 ⁹ ¹⁰ ¹¹ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁶ ¹⁶ ¹⁷ ¹⁸ ¹⁹ 	$\sum_{D} K^{0} K^{2} \pi^{0}$ $\sum_{D} K^{0} K^{2} \pi^{0}$ $\sum_{D} K^{0} \pi^{0}$	ave opportunity 0.55 \pm 0.16 DEFINEDAS1 < 0.10 2.3 \pm 0.7 1.7 \pm 0.5 2.3 ^{+0.7} _{-0.8} 0.07 \pm 0.04 π^+ 0.21 \pm 0.04 0.116 \pm 0.030 0.48 \pm 0.20	to firstly firstly firstly firstly firstly first firs	$ \begin{array}{c} \Xi^{-}\pi^{+} \\ \Xi^{-}\pi^{+}\pi^{+}\pi^{-} \\ \Omega^{-}K^{+} \\ \Xi^{-}e^{+}\nu_{e} \\ \Xi^{-}e^{+}\nu_{e} \\ \Xi^{-}e^{+}\mu_{e} \\ \Xi^{-}e^{+}\mu_{e} \\ \Xi^{-}\kappa^{+} \\ \Lambda K^{+}K^{-} (no \phi) \end{array} $	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1 1.0 ± 0.5 $5^{-} \pi^{+}$ 0.028 ± 0.006 0.029 ± 0.007
F9 F10 F11 F12 F13 F14 F15 F16 abibbc F17 F18 F19 F20	$\sum_{D} \sum_{k=0}^{D} \sum_{n=0}^{D} \sum_{k=0}^{D} \sum_{k=0}^{D$	ave opportunity 0.55 \pm 0.16 DEFINEDAS1 < 0.10 2.3 \pm 0.7 1.7 \pm 0.5 2.3 $^{+0.7}_{-0.8}$ 0.07 \pm 0.04 π^+ 0.21 \pm 0.04 0.116 \pm 0.030 0.48 \pm 0.20 0.18 \pm 0.09	to firstly firstly firstly firstly firstly firstly first fi	$ \begin{array}{c} \Xi^{-}\pi^{+} \\ \Xi^{-}\pi^{+}\pi^{+}\pi^{-} \\ \Omega^{-}K^{+} \\ \Xi^{-}e^{+}\nu_{e} \\ \Xi^{-}e^{+}\nu_{e} \\ \Xi^{-}\ell^{+} \text{ anything} \\ \begin{array}{c} \text{obo-suppressed decays} - \text{ relative to } \Xi \\ \Xi^{-}K^{+} \\ \Lambda K^{+}K^{-} (\text{no } \phi) \\ \Lambda \phi \end{array} $	y tables DEFINEDAS 3.3 ± 1.4 0.297 ± 0.024 3.1 ± 1.1 1.0 ± 0.5 π^+ 0.028 ± 0.006 0.029 ± 0.007 0.024 ± 0.007

Most of the Ξ_c weak decays to BP are missing in experiment.

BFs of Cabibbo-allowed decays

	RQM	Pole	Pole	RQM	Pole	Pole (in	units of %
Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	6.45	0.44	0.84	3.08	1.56	0.04	
$\Xi_c^+ \to \Xi^0 \pi^+$	3.54	3.36	3.93	4.40	1.59	0.53	0.55 ± 0.16^a
$\Xi_c^0 o \Lambda \bar{K}^0$	0.12	0.37	0.27	0.42	0.35	0.54	seen
$\Xi^0_c o \Sigma^0 \bar{K}^0$	1.18	0.11	0.13	0.20	0.11	0.07	
$\Xi_c^0\to \Sigma^+ K^-$	0.12	0.12		0.27	0.36	0.12	
$\Xi_c^0 \to \Xi^0 \pi^0$	0.03	0.56	0.28	0.04	0.69	0.87	
$\Xi_c^0 \to \Xi^0 \eta$	0.24			0.28	0.01	0.22	
$\Xi_c^0 o \Xi^0 \eta'$	0.85			0.31	0.09	0.06	
$\Xi_c^0 \to \Xi^- \pi^+$	1.04	1.74	1.25	1.22	0.61	2.46	seen
$\Omega^0_c ightarrow \overline{\Xi^0 \bar{K}^0}$	1.21		0.09	0.02			

Most of the Ξ_c weak decay asymmetries are missing in experiment.

Decay asymmetry α for Cabibbo-allowed decays

Longitudinal pol. of daughter baryon from unpol. parent baryon

 \Rightarrow information on the relative sign between s- and p-waves

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	I	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)		
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	-1.0	0.24	-0.09	-0.99	1.00	0.54		
$\Xi_c^+ \to \Xi^0 \pi^+$	-0.78	-0.81	-0.77	-1.0	1.00	-0.27		
$\Xi_c^0 o \Lambda \bar{K}^0$	-0.76	1.0	-0.73	-0.75	-0.29	-0.79		
$\Xi_c^0 \to \Sigma^0 \bar{K}^0$	-0.96	-0.99	-0.59	-0.55	-0.50	0.48	i	
$\Xi_c^0 \to \Sigma^+ K^-$	0	0		0	0	0		
$\Xi_c^0 \to \Xi^0 \pi^0$	0.92	0.92	-0.54	0.94	0.21	-0.80		
$\Xi_c^0 \to \Xi^0 \eta$	-0.92			-1.0	-0.04	0.21		
$\Xi^0_c ightarrow \Xi^0 \eta'$	-0.38			-0.32	-1.00	0.80		
$\Xi_c^0 \to \Xi^- \pi^+$	-0.38	-0.38	-0.99	-0.84	-0.79	-0.97	ŀ	-0.6 ± 0.4
$\Omega_c^0 o \Xi^0 \bar{K}^0$	0.51		-0.93	-0.81			l.	

Charm-flavor-conserving weak decays

Light quarks undergo weak transitions, while c quark behaves as a "spectator" e.g. $\Xi_c \rightarrow \Lambda_c \pi$. Can be studied using HHChPT.

$$\begin{array}{l} \mathsf{Br}(\Xi_c^{\ 0} \to \Lambda_c^{\ +}\pi^{-}) = 2.9 \times 10^{-4} \\ \mathsf{Br}(\Xi_c^{\ +} \to \Lambda_c^{\ +}\pi^{0}) = 6.7 \times 10^{-4} \end{array} \right\} \begin{array}{l} \begin{array}{l} \mathsf{s} \to W^{-}u \\ \underline{\mathsf{can \ be \ firstly \ explored \ at \ BESIII}} \\ \underline{\mathsf{cheng, \ Cheung, \ Lin, \ Lin, \ Yan, \ Yu \ ('92)}} \end{array}$$

Semileptonic decays

-	→ NI	RQM	\leftarrow	RQM L	.FQM	QSR	QSR	
Process	Pérez-Marcial	Singleton	Cheng,	Ivanov	Luo	Marques de Carvalho	Huang,	Expt.
	et al. [85]	[86]	Tseng [81]	et al. [87]	[88]	et al. [89]	Wang [90]	[3]
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	18.1 (12.5)	8.5	7.4	8.16	9.7			seen
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	18.4 (12.7)	8.5	7.4	8.16	9.7			seen

in units of 10¹⁰ s⁻¹

Thanks