Charm Baryon Decays with SU(3)_F symmetry 利用SU(3)_F對稱性研究粲重子衰變

Chao-Qiang Geng

耿朝強

TIONAL TSING HUA UNIVERSITY

第二屆理論實驗聯合研討會:重子譜和衰變

(2018年12月15-16日)

LANZHOU UNIVERSITY

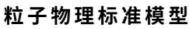
國立情華大學NETS

- A

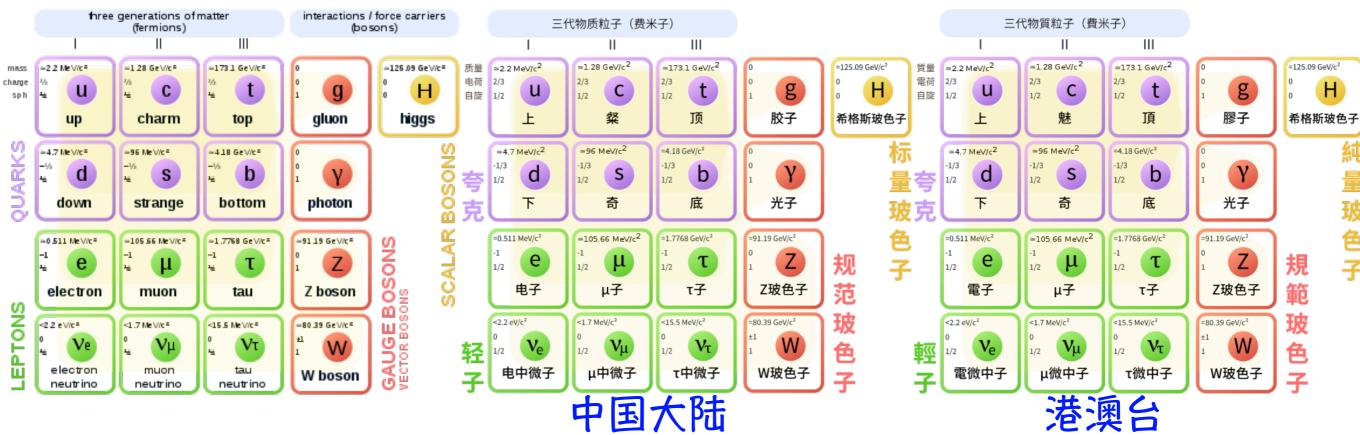
LANZHOU UNIVERSITY

Outline

- Introduction
- Effective Hamiltonians for weak decays of charmed baryons with SU(3)_F flavor symmetry
- Semileptonic decays of charmed baryons
- Two-body nonleptonic decays of charmed baryons
- K_S-K_L asymmetries in charmed baryon decays
- Three-body nonleptonic decays of charmed baryons
- Summary

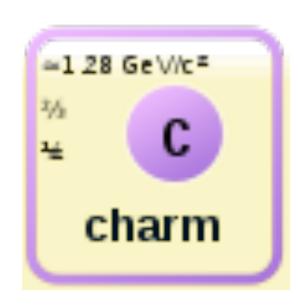

• Introduction



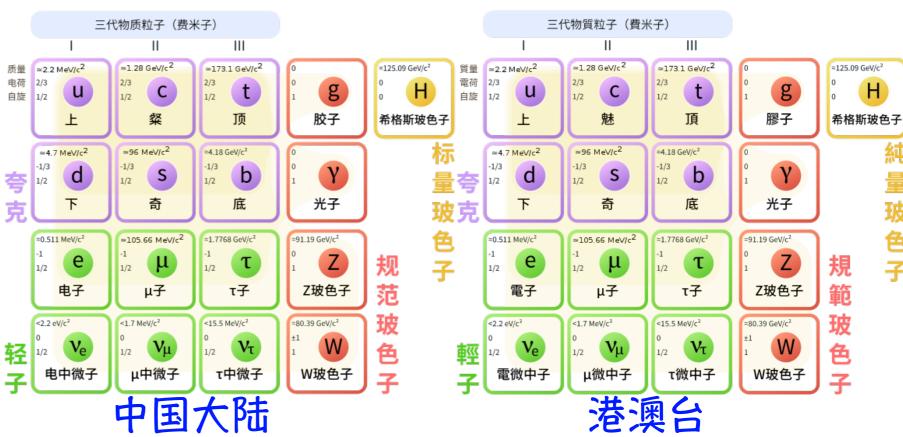

China element

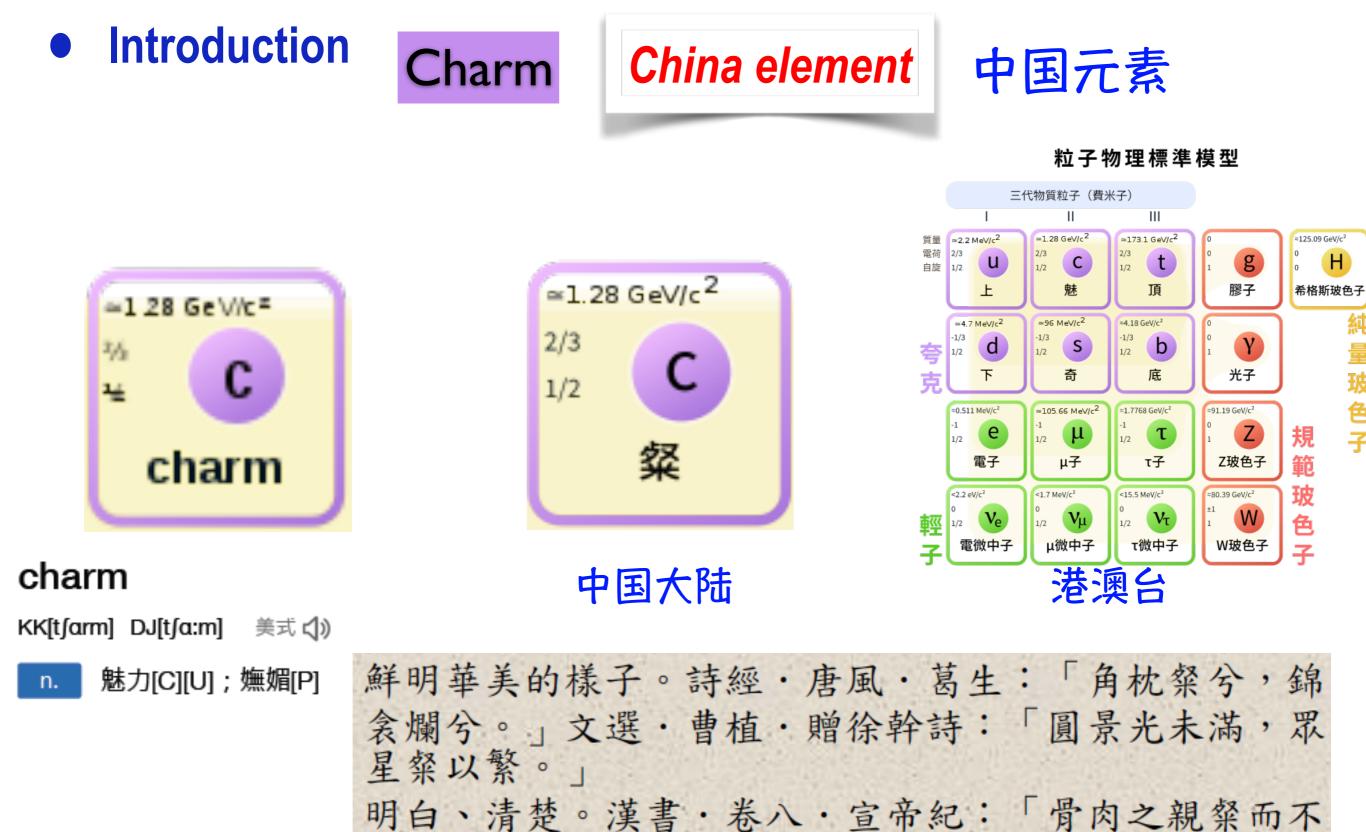
中国元素

Introduction



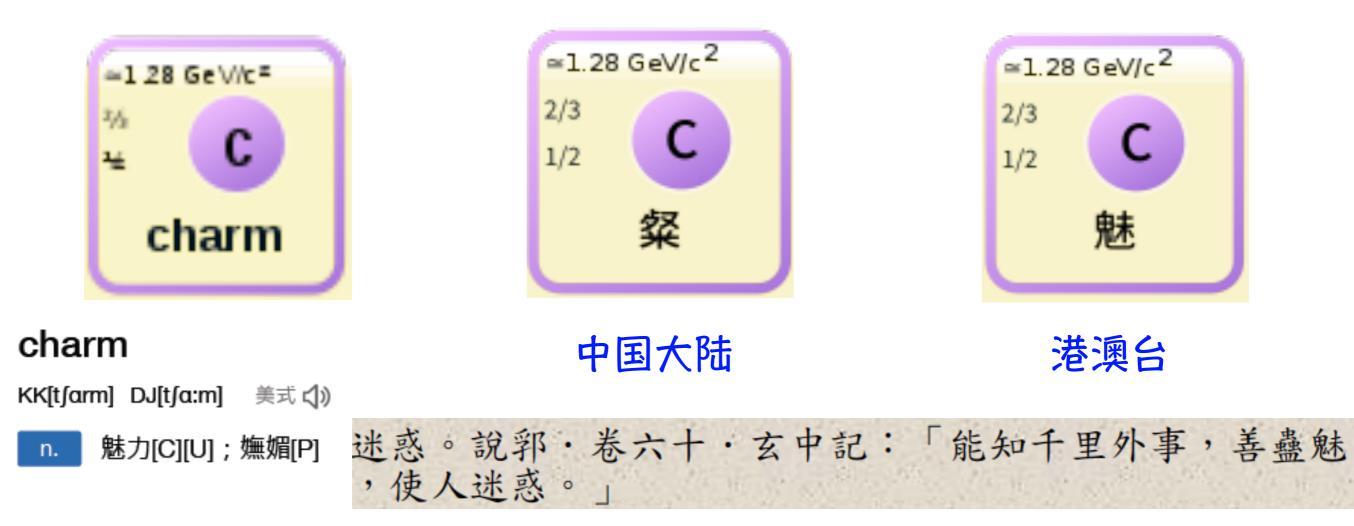
中国元素


粒子物理标准模型

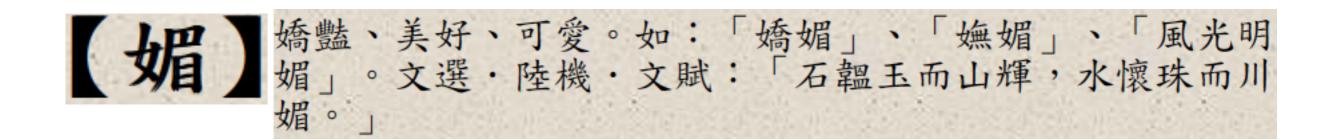

粒子物理標準模型

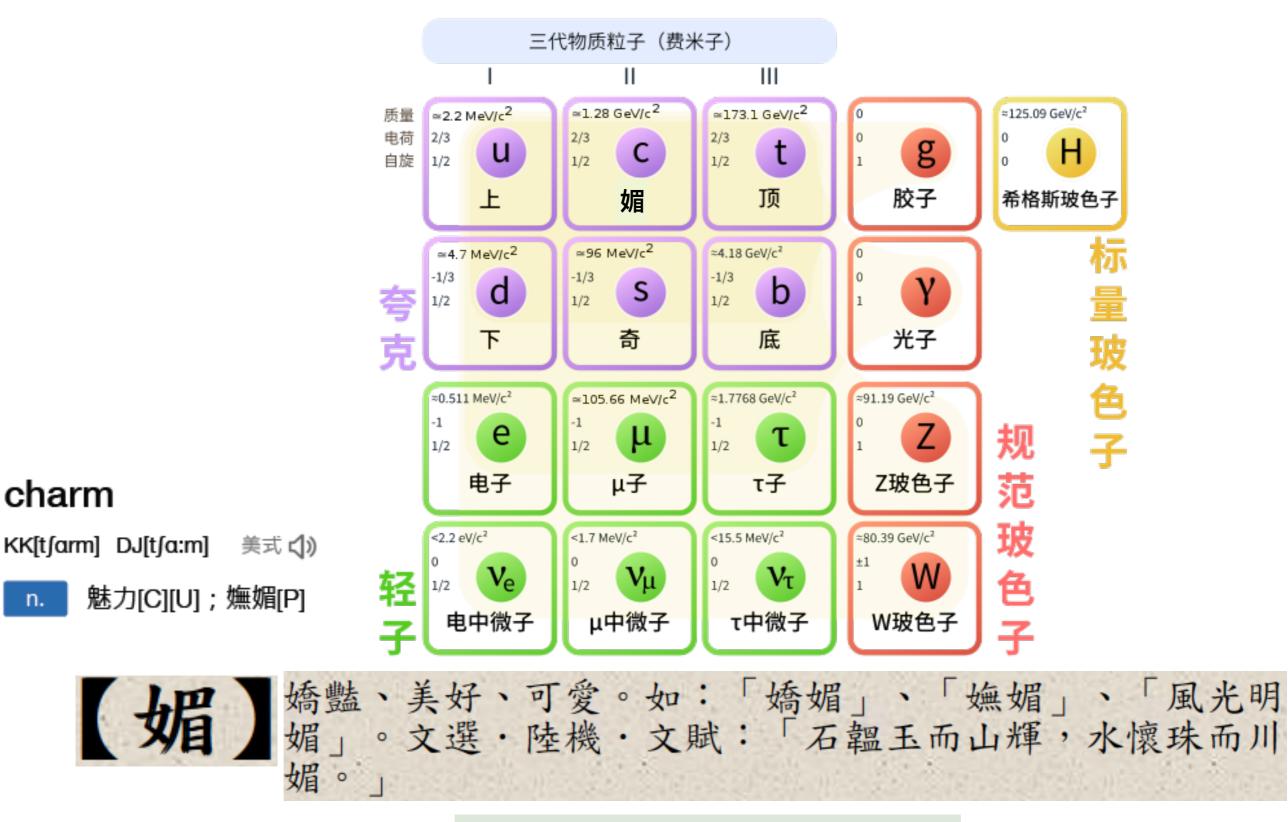
charm

KK[tʃarm] DJ[tʃa:m] 美式 �())
n. 魅力[C][U]; 嫵媚[P]



殊。」顏師古·注:「粲,明也。殊,絕也。


1



Introduction

粒子物理标准模型

Charm Quark 媚夸克

History for Charm in Theory

In 1956, Sakata model: $\binom{p}{n} \binom{\nu}{e} \binom{\nu}{\mu}$ S. Sakata, Prog. Theor. Phys. 16 (1956), 686.

Kiev symmetry Lepton-Baryon symmetry In 1959 and 1962, Marshak:

R. Marshak, rapporteur talk at 9th International Conference on High Energy Physics, Kiev, Ukraine, 1959.

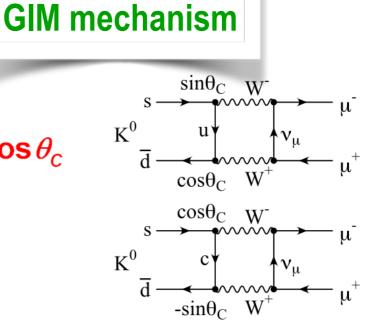
R. Marshak, rapporteur talk at 11th International Conference on High Energy Physics, CERN, July 1962.

In 1962, Sakata et al (Nagoya); Katayama et al (Tokyo): $\begin{pmatrix} p & V^{+} \\ n & \Lambda \end{pmatrix} \begin{pmatrix} \nu_{1} & \nu_{2} \\ e & \mu \end{pmatrix}$

Z. Maki, M. Nakagava and S. Sakata, Prog. Theor. Phys. 28 (1962), 870.

Y. Katayama, K. Matumoto, S. Tanaka and E. Yamada, Prog. Theor. Phys. 28 (1962),675.

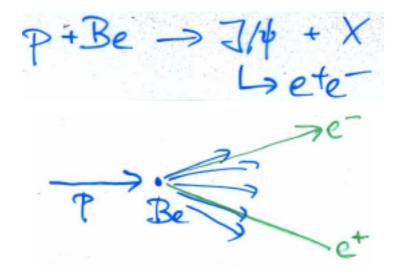
In 1964, Bjorken & Glashow: Proposed a 4th quark and invented the name "Charm"

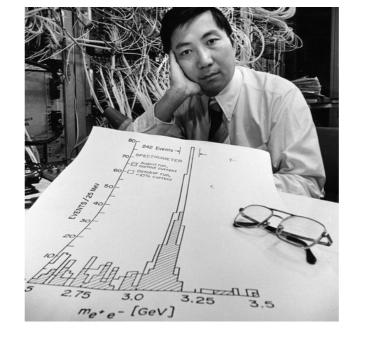

B.J. Bjorken and S. Glashow, Phys. Lett. 11 (1964) 255.

In 1970, Glashow, Iliopoulos and Maiani (GIM):

S. Glashow, Iliopoulos and Maiani, Phys. Rev. D2 (1970) 1285.

 $\mathbf{K}^{0} \rightarrow \mu^{+} + \mu^{-} \qquad \qquad \mathcal{M}_{1} \propto \sin\theta_{c} \cos\theta_{c} , \, \mathcal{M}_{2} \propto -\sin\theta_{c} \cos\theta_{c}$


The 1974 November Revolution of HEP: Discovery of a new QUARK — Charm (c)


务联十月革命 (November 1917)

 $J/\psi = c\overline{c}$

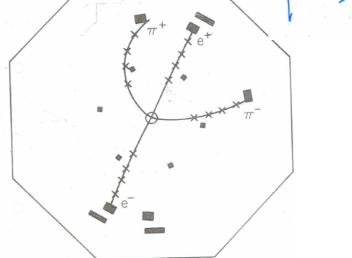
At the East coast of US: Received by PRL on Nov. 12, 1974

Brookhaven (Proton Synchrotron)

J

44年前(1974)

11月10,11日

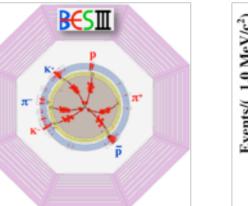

At the West coast of US: Received by PRL on Nov. 13, 1974

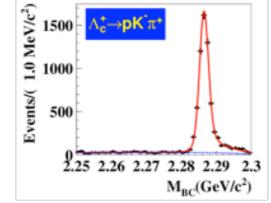
SLAC (e⁺e⁻ collider)

Nov. 10, 1974

Nov. 11, 1974 Ting and Richter met at SLAC

丁與Sau-Lan Wu通話定稿

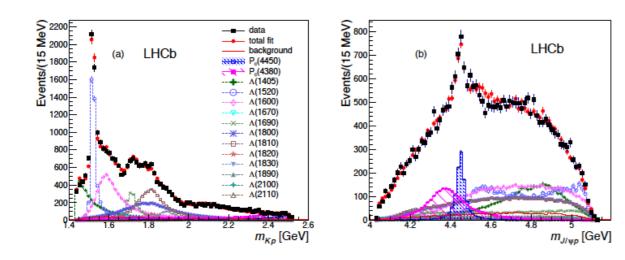


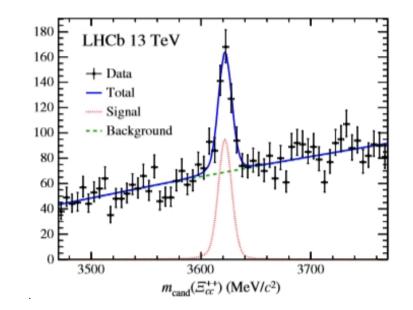

Nobel Physics Prize 1976

B. Richter

Recent experimental developments in charmed baryons:

BESIII at the *Beijing* Electron Positron Collider (BEPCII)




A uniquely clean background to study Charm Baryons

 $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)_{\text{BESIII}} = (5.84 \pm 0.27 \pm 0.23)\%$

Many newly measured charmed baryon decays.

LHCb discoveries pentaquark-like charm baryons P_c (uudc \overline{c}) and the doubly-charmed baryon Ξ_{cc}^{++} by the Chinese group ($\clubsuit \otimes \mathbb{R}$ ($\clubsuit \otimes \mathbb{R}$)

Extensive recent theoretical studies on weak decays of charmed baryons (cross-strait 海峡雨岸):

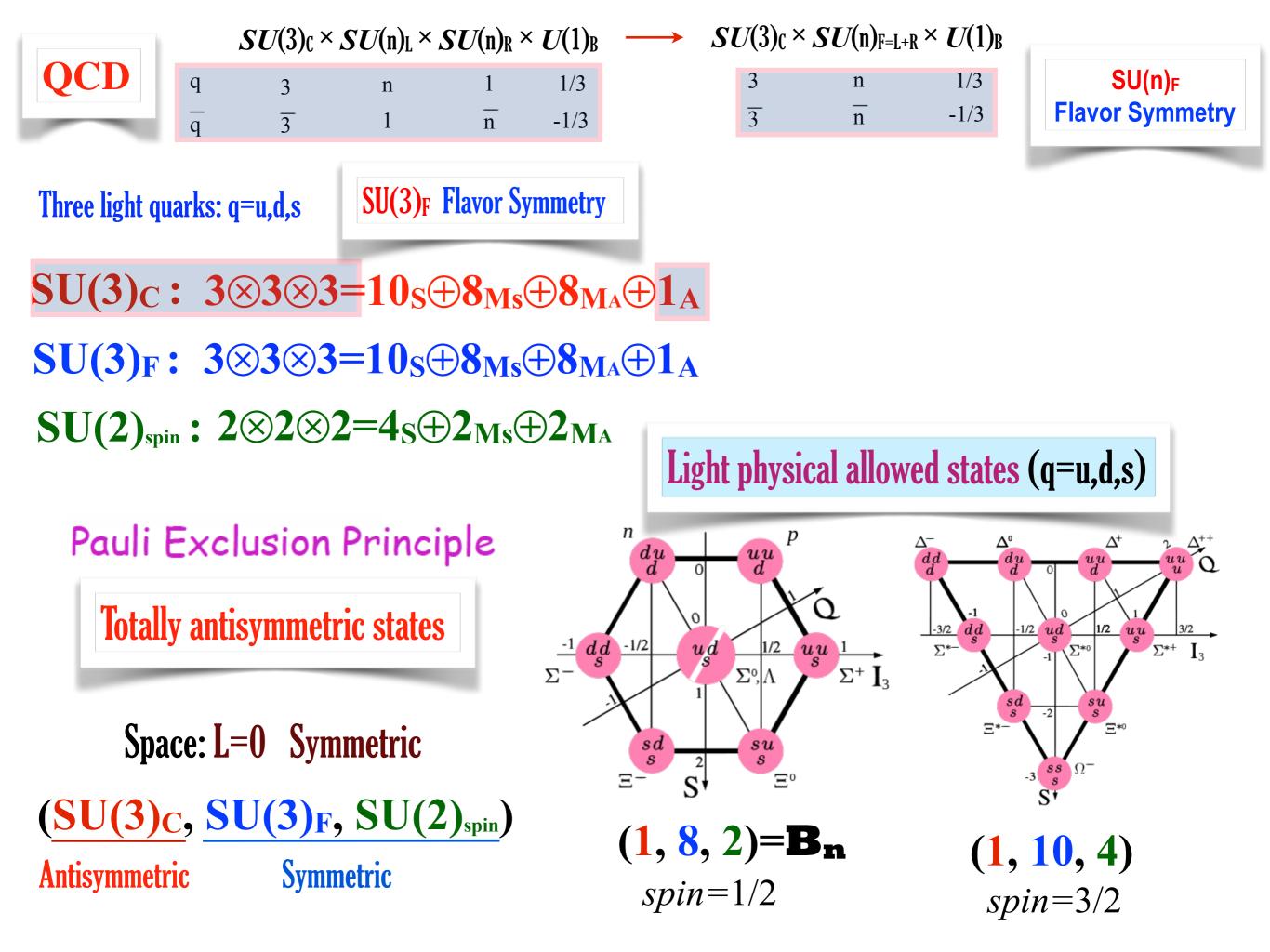
• H.Y. Cheng *et al* in 1990s and recently:

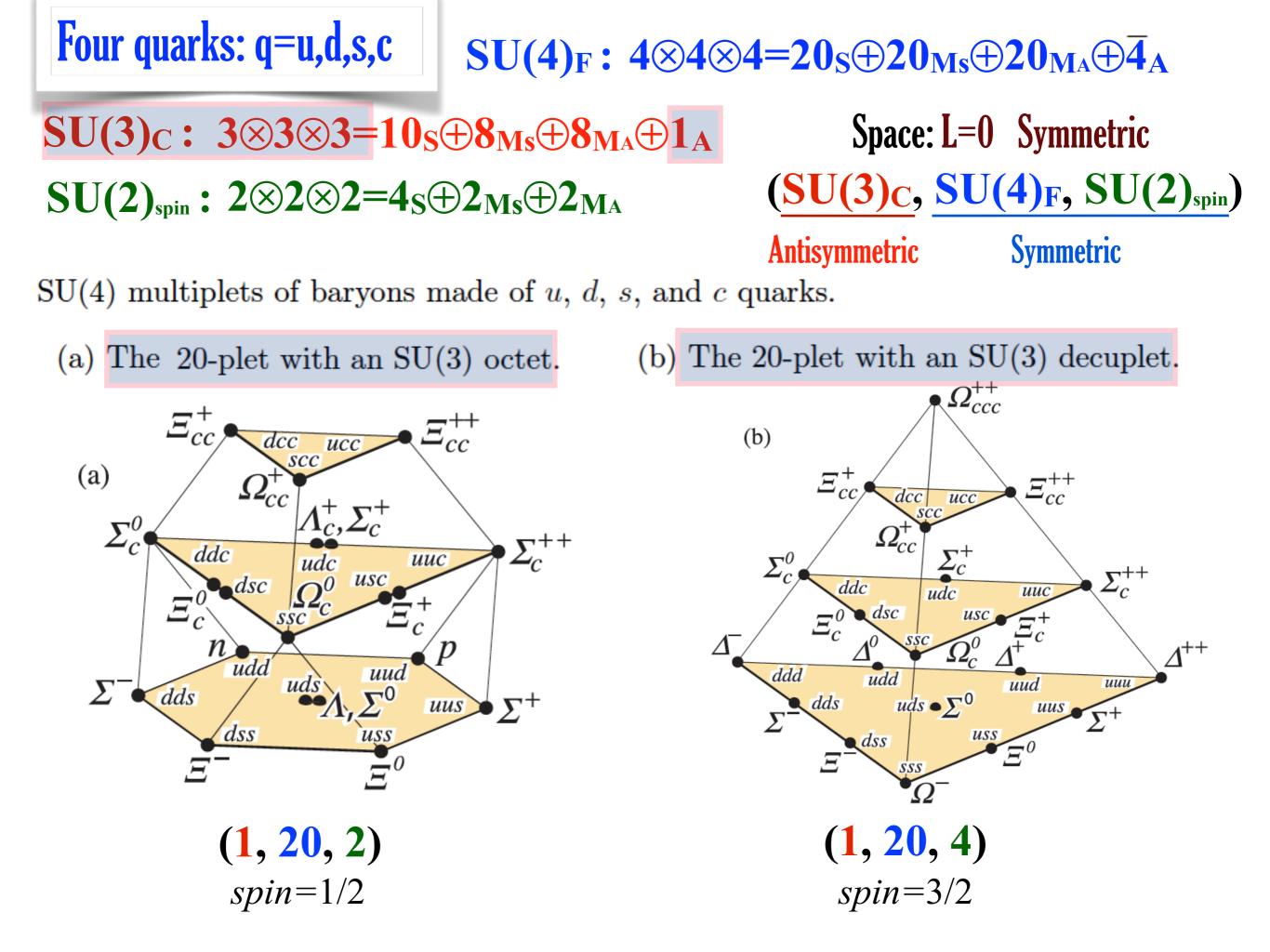
H.Y. Cheng, X.W. Kang and F.R. Xu, ``Singly Cabibbo-suppressed hadronic decays of Λ_{c^+} ," Phys. Rev. D97, 074028 (2018)

C.D. Lü, W. Wang, F.S. Yu :

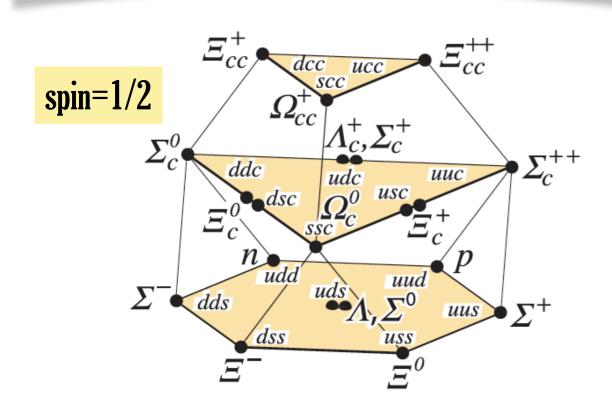
C.D. Lü, W. Wang and F.S. Yu, ``Test flavor SU(3) symmetry in exclusive Λ_c decays," Phys. Rev. D93, 056008 (2016)

F.S. Yu, H.Y. Jiang, R.H. Li, C.D. Lü, W. Wang, Z.T. Zhou, ``Discovery Potentials of Doubly Charmed Baryons," Chin. Phys. C42, 051001 (2018)

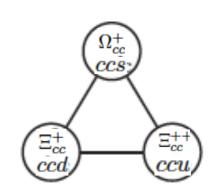

W. Wang, Z.P. Xing and J. Xu,``Weak Decays of Doubly Heavy Baryons: SU(3) Analysis," Eur. Phys. J. C77, 800 (2017)


D. Wang, P.F. Guo, W.H. Long and F.S. Yu, $K_{S^0}-K_{L^0}$ asymmetries and CP violation in charmed baryon decays into neutral kaons," JHEP 1803, 066 (2018)

Z.X. Zhao, ``Weak decays of heavy baryons in the light-front approach," Chin. Phys. C42, 093101 (2018)


Studies of charmed baryons with SU(3)_F flavor symmetry

- C.Q. Geng, Y.K. Hsiao, Y.H. Lin and L.L. Liu ``Non-leptonic two-body weak decays of A_c(2286),'' Phys. Lett. B776, 265 (2017).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "Charmed Baryon Weak Decays with SU(3) Flavor Symmetry," JHEP 1711, 147 (2017).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "Anti-triplet charmed baryon decays with SU(3) Flavor Symmetry," Phys. Rev. D97, 073006 (2018).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "SU(3) symmetry breaking in charmed baryon decays," Eur. Phys. J. C78, 593 (2018).
- C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, "Three-body charmed baryon Decays with SU(3) flavor symmetry," arXiv:1810.01079 [hep-ph].


20-plet of SU(4)_F with $8 \oplus \overline{3} \oplus 6 \oplus 3$ of SU(3)_F

$$\mathbf{SU(3)_F:8} \qquad \mathbf{B}_n = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p\\ \Sigma^- & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^0 & n\\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix}$$

Charmed Baryons
$$(J^{P}=1/2^{+})$$
 with SU(3)_F
SU(3)_F: $3 \otimes 3=\overline{3} \oplus 6$
anti-triplet ($\overline{3}$) sextet (6)
 $= (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}) \mathbf{B}_{c}' = \begin{pmatrix} \Sigma_{c}^{++} & \frac{1}{\sqrt{2}}\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Xi_{c}'^{+} \\ \frac{1}{\sqrt{2}}\Sigma_{c}^{+} & \Sigma_{c}^{0} & \frac{1}{\sqrt{2}}\Xi_{c}'^{0} \\ \frac{1}{\sqrt{2}}\Xi_{c}'^{+} & \frac{1}{\sqrt{2}}\Xi_{c}'^{0} & \Omega_{c}^{0} \end{pmatrix}$
 $\overbrace{U_{c}}^{\Lambda_{c}^{+}} \xrightarrow{U_{c}}^{\Psi_{c}} \xrightarrow{U_{c}}^{\Psi_{c}^{+}} \xrightarrow{U_{c}}^{\Psi_{c}} \xrightarrow{U_{c}}^{\Psi_{c}^{+}} \xrightarrow{U_{c}}^{\Psi_{c}} \xrightarrow{U_{c}}^{\Psi_{c}$

 \mathbf{B}_{c}

Effective Hamiltonians for weak decays of charmed baryons with SU(3) flavor symmetry

The effective Hamiltonian for the semileptonic $c \rightarrow q l^+ v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq} (\bar{q}c)_{V-A} (\bar{u}_{\nu} v_{\ell})_{V-A}$$

 $(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$ $(\bar{u}_\nu v_\ell)_{V-A} = \bar{u}_\nu \gamma^\mu (1 - \gamma_5) v_\ell$

For the non-leptonic $c \rightarrow s \ u \ \overline{d}$, $c \rightarrow u \ q \ \overline{q}$ and $c \rightarrow u \ d \ \overline{s}$ transitions,

$$\begin{aligned} \mathcal{H}_{eff}^{n\ell} &= \frac{G_F}{\sqrt{2}} \left\{ \begin{matrix} V_{cs} V_{ud}(c_+ O_+ + c_- O_-) + V_{cd} V_{ud}(c_+ \hat{O}_+ + c_- \hat{O}_-) + V_{cd} V_{us}(c_+ O'_+ + c_- O'_-) \end{matrix} \right\} \\ & \textbf{Cabibbo-allowed} \\ \textbf{Cabibbo-suppressed} \\ \textbf{doubly Cabibbo-suppressed} \\ (V_{cs} V_{ud}, V_{cd} V_{ud}, V_{cd} V_{us}) &\simeq (1, -s_c, -s_c^2) \\ & s_c \equiv \sin \theta_c = 0.2248 \\ O_{\pm} &= \frac{1}{2} [(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A}] \\ & O_{\pm}^q &= \frac{1}{2} [(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A}] \\ & O'_{\pm} &= \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}] \\ \end{array} \end{aligned}$$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3})(\bar{u}_{\nu}v_{\ell})_{V-A}$$

 $(\bar{q}_i q^k)(\bar{q}_j c)$ with $\bar{q}_i q^k \bar{q}_j$ being decomposed as $\bar{3} \times 3 \times \bar{3} = \bar{3} + \bar{3}' + 6 + 15$ $\mathcal{O}_{6} = \frac{1}{2} (\bar{u}d\bar{s} - \bar{s}d\bar{u})c, \quad \hat{\mathcal{O}}_{6} = \frac{1}{2} (\bar{u}d\bar{d} - \bar{d}d\bar{u} + \bar{s}s\bar{u} - \bar{u}s\bar{s})c, \quad \mathcal{O}'_{6} = \frac{1}{2} (\bar{u}s\bar{d} - \bar{d}s\bar{u})c,$ $\mathcal{O}_{\overline{15}} = \frac{1}{2} (\bar{u}d\bar{s} + \bar{s}d\bar{u})c \,, \quad \hat{\mathcal{O}}_{\overline{15}} = \frac{1}{2} (\bar{u}d\bar{d} + \bar{d}d\bar{u} - \bar{s}s\bar{u} - \bar{u}s\bar{s})c \,, \quad \mathcal{O}'_{\overline{15}} = \frac{1}{2} (\bar{u}s\bar{d} + \bar{d}s\bar{u})c \,,$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$\begin{aligned} H_{22}(6) &= 2 , H_{23}(6) = H_{32}(6) = -2s_c , H_{33}(6) = 2s_c^2 \\ H_2^{13}(\overline{15}) &= H_2^{31}(\overline{15}) = 1 , \\ H_2^{12}(\overline{15}) &= H_2^{21}(\overline{15}) = -H_3^{13}(\overline{15}) = -H_3^{31}(\overline{15}) = s_c , \\ H_3^{12}(\overline{15}) &= H_3^{21}(\overline{15}) = -s_c^2 , \end{aligned}$$

(2)

The Hamiltonian without QCD correction

The first order QCD corrections:

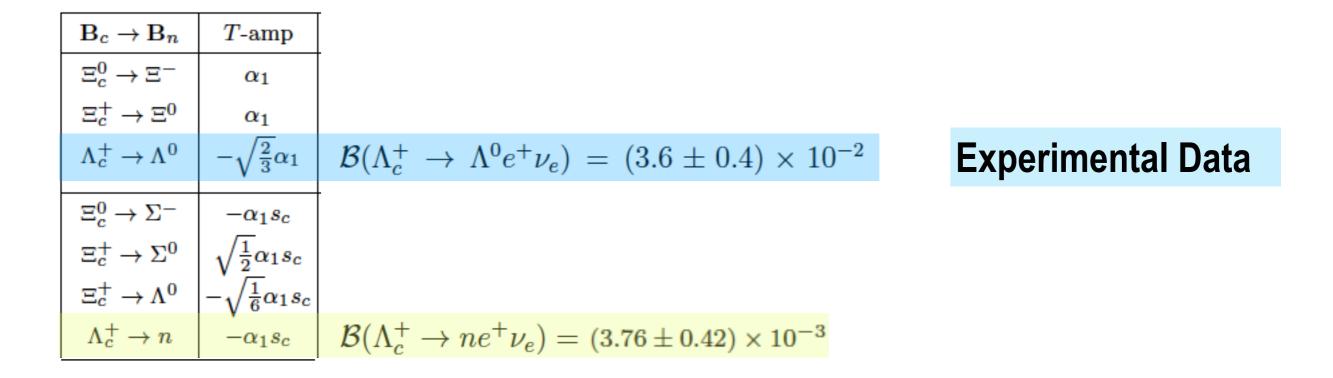
Summing up all orders:

ctions:
$$c_{-}^{0} = c_{+}^{0} = 1$$

 $c_{-}^{1} = 1 + \frac{\alpha_{s}}{2\pi} \ln \frac{M_{W}^{2}}{\mu^{2}}$
 $c_{+}^{1} = 1 - \frac{\alpha_{s}}{2\pi} \ln \frac{M_{W}^{2}}{\mu^{2}}$
 $c_{-} = \left(\frac{\alpha(M_{W}^{2})}{\alpha(\mu^{2})}\right)^{\frac{-12}{33-2N_{f}}}$
 $c_{+} = \left(\frac{\alpha(M_{W}^{2})}{\alpha(\mu^{2})}\right)^{\frac{6}{33-2N_{f}}}$

$$\frac{c_{-}}{c_{+}} = \frac{1}{c_{+}^{3}} = \left(\frac{\alpha(m_{b}^{2})}{\alpha(M_{W}^{2})}\right)^{\frac{18}{23}} \left(\frac{\alpha(m_{c}^{2})}{\alpha(m_{b}^{2})}\right)^{\frac{18}{25}} \sim 2.4$$

 c_{-}


• Semileptonic decays of charmed baryons

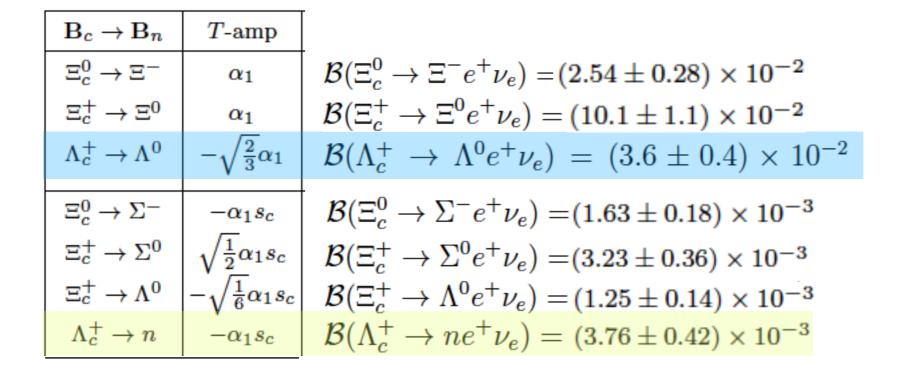
$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{3})(\mathbf{B}_c)_i$$

C.D. Lü, W. Wang and F.S. Yu, ``Test flavor SU(3) symmetry in exclusive Λ_c decays," Phys. Rev. D93, 056008 (2016)


Semileptonic decays of charmed baryons

 $\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{\mathbf{3}})(\mathbf{B}_c)_i$$

Experimental Data

Decay mode	SU(3)	\mathbf{LF}	MBM	NRQM	HQET+	LQCD	RQM	CQM	CLEO	Data
	new results	[3]	[4]	[4]	NRQM[5]	[6, 7]	[8]	[9, 10]	[1, 2, 11]	[1]
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e)$	3.60 ± 0.40	1.63	2.96	3.60	1.42	3.8	3.24	2.78	-	3.60 ± 0.40
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e)$	10.1 ± 1.1	5.39	1.33	1.01	_	_	_	_	3.4 ± 2.2	_
$10^2 \mathcal{B}(\Xi_c^0\to\Xi^-e^+\nu_e)$	2.54 ± 0.28	1.35	0.40	0.30	0.83	_	_	_	4.87 ± 1.74	_
$10^3 \mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e)$	3.76 ± 0.42	2.01	2.20	3.40	_	4.10	2.68	2.07	-	—
$10^4 \mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e)$	32.33.6	18.7	4.42	4.42	_	-	_	_	_	-
$10^4 \mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e)$	12.5 ± 1.4	8.22	8.84	8.84	_	_	_	_	$-\mathbf{Z}$	_
$10^4 \mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e)$	16.3 ± 1.8	9.47	2.24	1.12	-	-	_	_	_	_

TABLE I. Charmed baryon semileptonic decay branching ratio from original paper

TABLE II.	Charmed	baryon	semileptonic	decay	branching ra	atio reproductio	\mathbf{n}
-----------	---------	--------	--------------	-------	--------------	------------------	--------------

Decay mode	SU(3)	SU(3)*	\mathbf{LF}	MBM	NRQM	HQET+	LQCD	CLEO	Data
	new results	equal phase space	[3]	[4]	[4]	NRQM[5]	[6, 7]	[1, 2]	[1]
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e)$	3.60 ± 0.40	3.60 ± 0.40	1.52	2.75	3.40	1.43	3.8	_	3.60 ± 0.40
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e)$	10.1 ± 1.1	9.48 ± 1.05	5.09	1.34	1.04	_	_	2.2 ± 1.2	-
$10^2 \mathcal{B}(\Xi^0_c ightarrow \Xi^- e^+ \nu_e)$	2.54 ± 0.28	2.39 ± 0.27	1.27	0.27	1.90	0.86	_	6.26 ± 2.24	-
$10^3 \mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e)$	3.76 ± 0.42	2.64 ± 0.29	1.68	1.91	3.11	_	4.10	_	_
$10^3 \mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e)$	3.23 ± 0.36	2.32 ± 0.26	1.63	0.33	0.28	_	_	_	-
$10^4 \mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e)$	12.5 ± 1.4	7.7 ± 0.9	6.97	10.8	8.39	_	_	_	_
$10^4 \mathcal{B}(\Xi_c^0 o \Sigma^- e^+ \nu_e)$	16.3 ± 1.8	11.7 ± 1.3	8.19	1.21	0.97	_	_	_	_

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D98, 030001 (2018).

- [2] J. P. Alexander et al. [CLEO Collaboration], Phys. Rev. Lett. 74, 3113 (1995).
- [3] Z. X. Zhao, Chin. Phys. C42, 093101 (2018).
- [4] R. Perez-Marcial et al., Phys. Rev. D40, 2955 (1989).
- [5] H. Y. Cheng and B. Tseng, Phys. Rev. D53, 1457 (1996).
- [6] S. Meinel, Phys. Rev. D97, 034511 (2018).
- [7] S. Meinel, Phys. Rev. Lett. 118, 082001 (2017).

after timing factor $2 \rightarrow SU(3)$ results

TABLE II. Charmed	baryon	semileptonic	decay	branching	ratio	reproduction
	J	1	~	0		1

Decay mode	SU(3)	SU(3)*	\mathbf{LF}	MBM	NRQM	HQET+	LQCD	CLEO	Data
	new results	equal phase space	[3]	[4]	[4]	NRQM[5]	[6, 7]	[1, 2]	[1]
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e)$	3.60 ± 0.40	3.60 ± 0.40	1.52	2.75	3.40	1.43	3.8	_	3.60 ± 0.40
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e)$	10.1 ± 1.1	9.48 ± 1.05	5.09	1.34	1.04	_	_	2.2 ± 1.2	-
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)$	2.54 ± 0.28	2.39 ± 0.27	1.27	0.27	1.90	0.86	_	6.26 ± 2.24	_
$10^3 \mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e)$	3.76 ± 0.42	2.64 ± 0.29	1.68	1.91	3.11	_	4.10	-	_
$10^{3}\mathcal{B}(\Xi_{c}^{+}\to\Sigma^{0}e^{+}\nu_{e})$	3.23 ± 0.36	2.32 ± 0.26	1.63	0.33	0.28	_	_	_	_
$10^4 \mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e)$	12.5 ± 1.4	7.7 ± 0.9	6.97	10.8	8.39	_	_	_	_
$10^4 \mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e)$	16.3 ± 1.8	11.7 ± 1.3	8.19	1.21	0.97	_	—	_	-

- [1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D98, 030001 (2018).
- [2] J. P. Alexander et al. [CLEO Collaboration], Phys. Rev. Lett. 74, 3113 (1995).
- [3] Z. X. Zhao, Chin. Phys. C42, 093101 (2018).
- [4] R. Perez-Marcial et al., Phys. Rev. D40, 2955 (1989).
- [5] H. Y. Cheng and B. Tseng, Phys. Rev. D53, 1457 (1996).
- [6] S. Meinel, Phys. Rev. D97, 034511 (2018).
- [7] S. Meinel, Phys. Rev. Lett. 118, 082001 (2017).

• Two-body nonleptonic decays of charmed baryons

$$\begin{split} \mathbf{B}_{c} \to \mathbf{B}_{n} M & \mathbf{B}_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}) \\ \mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix} & M = \begin{pmatrix} \frac{1}{\sqrt{6}}\eta + \frac{1}{\sqrt{2}}\pi^{0} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{6}}\eta - \frac{1}{\sqrt{2}}\pi^{0} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix} \end{split}$$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n M) = \langle \mathbf{B}_n M | \mathcal{H}_{eff} | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} T(\mathbf{B}_c \to \mathbf{B}_n M)$$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n M) = T(\mathcal{O}_6) + T(\mathcal{O}_{\overline{15}})$$

 $T(\mathcal{O}_6) = a_1 H_{ij}(6) T^{ik}(\mathbf{B}_n)_k^l (M)_l^j + a_2 H_{ij}(6) T^{ik}(M)_k^l (\mathbf{B}_n)_l^j + a_3 H_{ij}(6) (\mathbf{B}_n)_k^i (M)_l^j T^{kl}$

 $T_{ij} \equiv (\mathbf{B}_c)_k \epsilon^{ijk}$

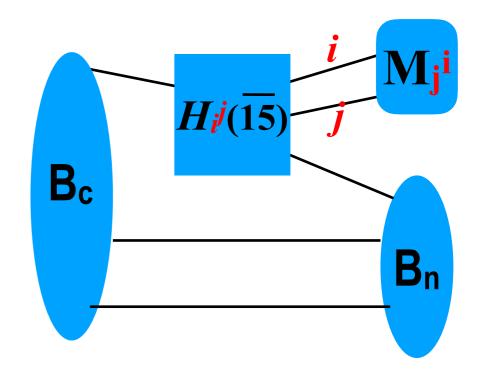
 $T(\mathcal{O}_{\overline{15}}) = a_4 H_{li}^k(\overline{15})(\mathbf{B}_c)^j (M)_j^i (\mathbf{B}_n)_k^l + a_5 (\mathbf{B}_n)_j^i (M)_i^l H(\overline{15})_l^{jk} (\mathbf{B}_c)_k$ $+ a_6 (\mathbf{B}_n)_l^k (M)_j^i H(\overline{15})_i^{jl} (\mathbf{B}_c)_k + a_7 (\mathbf{B}_n)_i^l (M)_j^i H(\overline{15})_l^{jk} (\mathbf{B}_c)_k$ Two reasons:

1. $(c_{-}/c_{+})^{2} \sim 5.5;$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$\mathcal{H}(\overline{15})\} \qquad \qquad \mathbf{Assumption} \qquad \qquad \mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \{c_- H(6)\}$$

2. $\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c$ is symmetric, whereas the baryon wave function is totally


antisymmetric in color indices. — Vanishing nonfactorizable contributions

What is about the factorizable parts of $H(\overline{15})$?

 $T(\mathcal{O}_{\overline{15}}) = a_4 H_{li}^k (\overline{15}) (\mathbf{B}_c)^j (M)_j^i (\mathbf{B}_n)_k^l + a_5 (\mathbf{B}_n)_j^i (M)_i^l H (\overline{15})_l^{jk} (\mathbf{B}_c)_k$ $+ \frac{a_6 (\mathbf{B}_n)_l^k (M)_j^i H (\overline{15})_i^{jl} (\mathbf{B}_c)_k}{15} + a_7 (\mathbf{B}_n)_i^l (M)_j^i H (\overline{15})_l^{jk} (\mathbf{B}_c)_k$

 $a_6(\mathbf{B}_n)_l^k(M)_j^i H(\overline{15})_i^{jl}(\mathbf{B}_c)_k$

the only term which leads to factorizable contributions to ${\bm B}_c \to {\bm B}_{\bm n} M$

Cabibbo-allowed

Cabibbo-suppressed

channel	amplitude	channel	amplitude
$\Xi_c^0 \to \Sigma^+ K^-$	$2a_2$	$\Xi_c^0 \rightarrow \Sigma^+ \pi^-$	$2a_2$
$\Xi_c^0 \to \Sigma^0 \bar{K}^0$	$\sqrt{2}(-a_2 - a_3 + \frac{a_6}{2})$	$\Xi_c^0 \to \Sigma^0 \pi^0$	$a_1 + a_2 - rac{a_6}{2}$
$\Xi_c^0\to \Xi^0\pi^0$	$\sqrt{2}(-a_1 + a_3)$	$\Xi_c^0 o \Sigma^0 \eta$	$\frac{\sqrt{3}}{3}(-a_1-a_2-2a_3+\frac{3}{2}a_6)$
$\Xi_c^0\to \Xi^0\eta$	$\frac{\sqrt{6}}{3}(a_1 - 2a_2 - a_3)$	$\Xi_c^0 \to \Sigma^- \pi^+$	$2a_1 + a_6$
$\Xi_c^0 \rightarrow \Xi^- \pi^+$	$2a_1 + a_6$	$\Xi_c^0 ightarrow \Xi^0 K^0$	$-2a_1 + 2a_2 + 2a_3$
$\Xi_c^0 ightarrow \Lambda^0 ar K^0$	$\frac{\sqrt{6}}{3}(-2a_1+a_2+a_3+\frac{a_6}{2})$	$\Xi_c^0 \to \Xi^- K^+$	$-2a_1 - a_6$
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	$2a_3 - a_6$	$\Xi_c^0 \to p K^-$	$-2a_{2}$
$\Xi_c^+ \to \Xi^0 \pi^+$	$-2a_3 - a_6$	$\Xi_c^0 ightarrow n ar K^0$	$2a_1 - 2a_2 - 2a_3$
$\Lambda_c^+ \to \Sigma^+ \pi^0$	$\sqrt{2}(a_1 - a_2 - a_3)$	$\Xi_c^0 ightarrow \Lambda^0 \pi^0$	$\frac{1}{\sqrt{3}}(-a_1-a_2+2a_3-\frac{a_6}{2})$
$\Lambda_c^+ \to \Sigma^+ \eta$	$\frac{\sqrt{6}}{3}(-a_1-a_2+a_3)$	$\Xi_c^0 o \Lambda^0 \eta$	$-a_1 - a_2 + rac{a_6}{2}$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$\sqrt{2}(-a_1 + a_2 + a_3)$	$\Xi_c^+ \to \Sigma^+ \pi^0$	$\sqrt{2}(-a_1+a_2+\frac{a_6}{2})$
$\Lambda_c^+ \to \Xi^0 K^+$	$-2a_{2}$	$\Xi_c^+ \to \Sigma^+ \eta$	$\frac{\sqrt{6}}{3}(a_1/3 + a_2 + 2a_3 - \frac{3}{2}a_6)$
$\Lambda_c^+ \to p \bar{K}^0$	$-2a_1 + a_6$	$\Xi_c^+ \to \Sigma^0 \pi^+$	$\sqrt{2}(a_1 - a_2 + rac{a_6}{2})$
$\Lambda_c^+ \to \Lambda^0 \pi^+$	$\frac{\sqrt{6}}{3}(-a_1-a_2-a_3-a_6)$	$\Xi_c^+ \to \Xi^0 K^+$	$2a_2 + 2a_3 + a_6$
		$\Xi_c^+ \to p \bar{K}^0$	$2a_1-2a_3$
		$\Xi_c^+ \to \Lambda^0 \pi^+$	$\frac{\sqrt{6}}{3}(a_1+a_2-2a_3-\frac{a_6}{2})$
		$\Lambda_c^+ \to \Sigma^+ K^0$	$2a_1 - 2a_3$
		$\Lambda_c^+ \to \Sigma^0 K^+$	$\sqrt{2}(a_1-a_3)$
		$\Lambda_c^+ o p \pi^0$	$\sqrt{2}(a_2 + a_3 - \frac{a_6}{2})$
		$\Lambda_c^+ o p\eta$	$\frac{\sqrt{6}}{3}(-2a_1+a_2-a_3+\frac{3}{2}a_6)$
		$\Lambda_c^+ \to n\pi^+$	$2a_2 + 2a_3 + a_6$
		$\Lambda_c^+ \to \Lambda^0 K^+$	$\frac{\sqrt{6}}{3}(a_1 - 2a_2 + a_3 + a_6)$

doubly Cabibbo-suppressed

channel	amplitude
$\Xi_c^0\to \Sigma^0 K^0$	$\sqrt{2}(a_1 - \frac{a_6}{2})$
$\Xi_c^0\to \Sigma^- K^+$	$-2a_1 - a_6$
$\Xi_c^0 \rightarrow p \pi^-$	$-2a_{2}$
$\Xi_c^0 ightarrow n\pi^0$	$\sqrt{2}a_2$
$\Xi_c^0 ightarrow n\eta$	$\frac{\sqrt{6}}{3}(2a_1-a_2-2a_3)$
$\Xi_c^0\to\Lambda^0 K^0$	$\frac{\sqrt{6}}{3}(-a_1+2a_2+2a_3-\frac{a_6}{2})$
$\Xi_c^+ \to \Sigma^+ K^0$	$-2a_1 + a_6$
$\Xi_c^+ \to \Sigma^0 K^+$	$\sqrt{2}(-a_1 - \frac{a_6}{2})$
$\Xi_c^+ \to p \pi^0$	$-\sqrt{2}a_2$
$\Xi_c^+ o p\eta$	$\frac{\sqrt{6}}{3}(2a_1-a_2-2a_3)$
$\Xi_c^+ \to n\pi^+$	$-2a_{2}$
$\Xi_c^+ \to \Lambda^0 K^+$	$\frac{\sqrt{6}}{3}(-a_1+2a_2+2a_3+\frac{a_6}{2})$
$\Lambda_c^+ \to p K^0$	$2a_3 - a_6$
$\Lambda_c^+ \to nK^+$	$-2a_3 - a_6$

TABLE 2. The data of the $\mathbf{B}_c \to \mathbf{B}_n M$ decays.

Branching ratios	Data [4, 7]	Branching ratios	Data [4, 7]			
$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0)$	3.16 ± 0.16	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.70 ± 0.23			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	1.30 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda K^+)$	6.1 ± 1.2			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.24 ± 0.10	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	5.2 ± 0.8			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.29 ± 0.07	$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta)$	12.4 ± 3.0			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.50 ± 0.12	$\mathcal{R} = rac{\mathcal{B}(\Xi_c^0 o \Lambda \bar{K}^0)}{\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)}$	0.420 ± 0.056			
$10^4 B(\Lambda_c^+ \rightarrow p\pi^0) = 0.80 \pm 1.36$						

11 data points above to fit with 7 real parameters: $a_1, a_2 e^{i\delta_{a_2}}, a_3 e^{i\delta_{a_3}}, a_6 e^{i\delta_{a_6}}$ The minimum χ^2 fit: $\chi^2 = \sum_i \left(\frac{\mathcal{B}_{th}^i - \mathcal{B}_{ex}^i}{\sigma_{ex}^i}\right)^2 + \sum_j \left(\frac{\mathcal{R}_{th}^j - \mathcal{R}_{ex}^j}{\sigma_{ex}^j}\right)^2$

 $(a_1, a_2, a_3, a_6) = (0.271 \pm 0.006, 0.126 \pm 0.010, 0.051 \pm 0.012, 0.055 \pm 0.030) \ GeV^3$ $(\delta_{a_2}, \delta_{a_3}, \delta_{a_6}) = (82 \pm 6, -20 \pm 24, 40 \pm 36)^\circ$

$$\chi^2/d.o.f=1.8/4\simeq 0.5$$

BRs of Cabibbo-allowed decays

channel	$10^3 \mathbf{BR}_{th}$	$10^3 \mathbf{BR}_{EX}$
$\Xi_c^0 \to \Sigma^+ K^-$	3.7 ± 0.6	-
$\Xi_c^0 \to \Sigma^0 \bar{K}^0$	1.0 ± 0.6	-
$\Xi_c^0 ightarrow \Xi^0 \pi^0$	6.1 ± 1.1	-
$\Xi_c^0 ightarrow \Xi^0 \eta$	3.1 ± 0.6	-
$\Xi_c^0 ightarrow \Xi^- \pi^+$	20.3 ± 0.9	-
$\Xi_c^0\to\Lambda^0\bar{K}^0$	9.3 ± 0.9	-
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	2.1 ± 1.5	-
$\Xi_c^+ \to \Xi^0 \pi^+$	4.2 ± 1.9	
$\Lambda_c^+ \to \Sigma^+ \pi^0$	12.6 ± 2.1	12.4 ± 1.0
$\Lambda_c^+ \to \Sigma^+ \eta$	5.4 ± 1.0	7.0 ± 2.3
$\Lambda_c^+ \to \Sigma^0 \pi^+$	12.6 ± 2.1	12.9 ± 0.7
$\Lambda_c^+ \to \Xi^0 K^+$	5.9 ± 1.0	5.9 ± 1.0
$\Lambda_c^+ \to p \bar{K}^0$	31.3 ± 1.6	31.6 ± 1.6
$\Lambda_c^+ \to \Lambda^0 \pi^+$	13.1 ± 1.6	13.0 ± 0.7

BRs of Cabibbo-suppressed decays

channel	$10^4 \mathbf{BR}_{th}$	$10^4 \mathrm{BR}_{EX}$
$\Xi_c^0\to \Sigma^+\pi^-$	2.2 ± 0.4	-
$\Xi_c^0\to\Sigma^0\pi^0$	2.8 ± 0.3	-
$\Xi_c^0\to \Sigma^0\eta$	1.0 ± 0.2	-
$\Xi_c^0\to \Sigma^-\pi^+$	11.7 ± 0.5	-
$\Xi_c^0\to \Xi^0 K^0$	6.2 ± 1.0	-
$\Xi_c^0\to \Xi^- K^+$	9.8 ± 0.4	-
$\Xi_c^0 \to p K^-$	2.3 ± 0.4	-
$\Xi_c^0 ightarrow n \bar{K}^0$	7.8 ± 1.3	-
$\Xi_c^0\to\Lambda^0\pi^0$	1.0 ± 0.3	-
$\Xi_c^0 ightarrow \Lambda^0 \eta$	2.7 ± 0.3	-
$\Xi_c^+ \to \Sigma^+ \pi^0$	20.3 ± 2.0	-
$\Xi_c^+ \to \Sigma^+ \eta$	8.2 ± 1.9	-
$\Xi_c^+ \to \Sigma^0 \pi^+$	23.5 ± 2.3	-
$\Xi_c^+ \to \Xi^0 K^+$	9.8 ± 3.3	-
$\Xi_c^+ \to p \bar{K}^0$	29.2 ± 5.2	-
$\Xi_c^+ \to \Lambda^0 \pi^+$	5.1 ± 2.1	-
$\Lambda_c^+ \to \Sigma^+ K^0$	11.4 ± 2.0	-
$\Lambda_c^+ \to \Sigma^0 K^+$	5.7 ± 1.0	5.2 ± 0.8
$\Lambda_c^+ \to p \pi^0$	1.3 ± 0.7	0.8 ± 1.3
$\Lambda_c^+ o p\eta$	13.0 ± 1.0	12.4 ± 3.0
$\Lambda_c^+ \to n\pi^+$	6.1 ± 2.0	-
$\Lambda_c^+ \to \Lambda^0 K^+$	6.4 ± 0.9	6.1 ± 1.2

Remarks on $\Lambda_c \rightarrow p\pi^0$

	$10^4 \mathbf{BR}_{th}$	$10^4 \mathbf{BR}_{EX}$	$10^4 { m BR}_{th}$
channel	Our results	Data	PoCA
$\Lambda_c^+ \to \Sigma^+ K^0$	11.4 ± 2.0	-	14.4
$\Lambda_c^+ \to \Sigma^0 K^+$	5.7 ± 1.0	5.2 ± 0.8	7.18
$\Lambda_c^+ \to p \pi^0$	1.3 ± 0.7	0.8 ± 1.3 (<2.7)	0.75
$\Lambda_c^+ o p\eta$	13.0 ± 1.0	12.4 ± 3.0	12.8
$\Lambda_c^+ \to n\pi^+$	6.1 ± 2.0	-	2.66
$\Lambda_c^+ \to \Lambda^0 K^+$	6.4 ± 0.9	6.1 ± 1.2	10.6

Our result of Br($\Lambda_{c^+} \rightarrow p\pi^0$)=(1.3±0.7)×10⁻⁴ is consistent with the data of <2.7×10⁻⁴ as well as that of 0.75×10⁻⁴ by PoCA.

H.Y. Cheng, X.W. Kang and F.R. Xu, ``Singly Cabibbo-suppressed hadronic decays of Λ_c^+ ," Phys. Rev. D97, 074028 (2018)

BRs of DCS decays

channel	$10^5 { m BR}_{th}$
$\Xi_c^0\to \Sigma^0 K^0$	2.1 ± 0.1
$\Xi_c^0\to \Sigma^- K^+$	5.8 ± 0.3
$\Xi_c^0 \rightarrow p \pi^-$	1.3 ± 0.2
$\Xi_c^0 \rightarrow n \pi^0$	0.7 ± 0.1
$\Xi_c^0 o n\eta$	2.5 ± 0.4
$\Xi_c^0\to\Lambda^0 K^0$	0.7 ± 0.3
$\Xi_c^+ \to \Sigma^+ K^0$	16.8 ± 0.9
$\Xi_c^+ \to \Sigma^0 K^+$	11.4 ± 0.5
$\Xi_c^+ \to p \pi^0$	2.6 ± 0.4
$\Xi_c^+ o p\eta$	9.7 ± 1.6
$\Xi_c^+ \to n\pi^+$	5.1 ± 0.9
$\Xi_c^+ \to \Lambda^0 K^+$	3.0 ± 1.1
$\Lambda_c^+ \to p K^0$	0.3 ± 0.2
$\Lambda_c^+ \to nK^+$	0.6 ± 0.3

• K_S-K_L asymmetries in charmed baryon decays

$$\mathbf{R}_{K_{S,L}^{0}}(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S,L}^{0}) = \frac{\Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S}^{0}) - \Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{L}^{0})}{\Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S}^{0}) + \Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{L}^{0})}$$

 $K_S^0 - K_L^0$ asymmetries between Cabbibo favored and doubly suppressed modes

channel	irreducible ,amplitude	$10^3 \mathbf{BR}_{th}$	$10^2 \mathbf{R}_{K^0_{S,L}}$	
$\Xi_c^0\to \Sigma^0 K_L^0$	$-a_2-a_3+rac{a_6}{2}+a_1s_c^2-rac{a_6s_c^2}{2}$	0.5 ± 0.3	$10.0\substack{+5.9 \\ -5.3}$	9.1±1.6
$\Xi_c^0\to \Sigma^0 K^0_S$	$a_2+a_3-rac{a_6}{2}-rac{a_6s_c^2}{2}+a_1s_c^2$	0.6 ± 0.3		
$\Xi_c^0\to \Lambda^0 K_L^0$	$\frac{1}{\sqrt{3}}(-2a_1 + a_2 + a_3 + \frac{a_6}{2} - a_1s_c^2 + 2a_2s_c^2 + 2a_3s_c^2 - \frac{a_6}{2}s_c^2)$	4.8 ± 0.5	$-4.4^{+0.6}_{-0.7}$	-3.7±0.4
$\Xi_c^0\to \Lambda^0 K_S^0$	$\frac{1}{\sqrt{3}}(2a_1 - a_2 - a_3 - \frac{a_6}{2} - a_1s_c^2 + 2a_2s_c^2 + 2a_3s_c^2 - \frac{a_6}{2}s_c^2)$	4.4 ± 0.4		
$\Xi_c^+ \to \Sigma^+ K_L^0$	$\sqrt{2}(a_3 - rac{a_6}{2} - a_1 s_c^2 + rac{a_6}{2} s_c^2)$	0.8 ± 0.8	$25.7^{+25.7}_{-18.0}$	-11.3 ~ 39.0
$\Xi_c^+\to \Sigma^+ K^0_S$	$\sqrt{2}(-a_3+rac{a_6}{2}-a_1s_c^2+rac{a_6}{2}s_c^2)$	1.5 ± 0.8		
$\Lambda_c^+ \to p K_L^0$	$\sqrt{2}(-a_1+rac{a_6}{2}+a_3s_c^2-rac{a_6}{2}s_c^2)$	15.5 ± 0.8	$1.1_{-0.6}^{+0.7}$	-1.0 ~ 8.7
$\Lambda_c^+ \to p K_S^0$	$\sqrt{2}(a_1 - rac{a_6}{2} + a_3 s_c^2 - rac{a_6}{2} s_c^2)$	15.8 ± 0.8		

D. Wang, P.F. Guo, W.H. Long and F.S. Yu, $K_{S^0}-K_{L^0}$ asymmetries and CP violation in charmed baryon decays into neutral kaons," JHEP 1803, 066 (2018)

Three-body nonleptonic decays of charmed baryons

 $\mathbf{B}_c \to \mathbf{B}_n M M'$

 $\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n M M') \equiv (G_F/\sqrt{2})T(\mathbf{B}_c \to \mathbf{B}_n M M')$

Under SU(3)_F flavor symmetry:

$$T^{ij} = (\mathbf{B_c})_a \epsilon^{aij}$$

$$\begin{split} T(\mathbf{B}_{c} \to \mathbf{B}_{n}MM) &= a_{1}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{l}^{m}(M')_{m}^{l}H(6)_{jk}T^{ij} + a_{2}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{j}^{m}(M')_{m}^{l}H(6)_{kl}T^{ij} \\ &+ a_{3}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{k}^{m}(M')_{m}^{l}H(6)_{jl}T^{ij} + a_{4}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{j}^{l}(M')_{k}^{m}H(6)_{lm}T^{ij} \\ &+ a_{5}(\bar{\mathbf{B}}_{n})_{k}^{l}(M)_{j}^{m}(M')_{m}^{k}H(6)_{il}T^{ij} + a_{6}(\bar{\mathbf{B}}_{n})_{k}^{l}(M)_{j}^{m}(M')_{l}^{k}H(6)_{im}T^{ij} \end{split}$$

Assumptions:

- 1. Consider only the S-wave (L=0) contributions from MM' in the amplitudes.
- 2. Neglect the effects from H(15).

3. Take the data with only the non-resonant parts.

T-amplitudes of $\Lambda_c^+ \to {\bf B_n} M M'$

CF mode	T-amp	CS mode	$T-amp/t_c$	DCS mode	T -amp $/t_c^2$
$\Sigma^+ \pi^0 \pi^0$	$4a_1 + 2a_2 + 2a_3 + 2a_4 - 2a_5$	$\Sigma^+ \pi^0 K^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + 2\sqrt{2}a_4$	$\Sigma^+ K^0 K^0$	$4a_4$
$\Sigma^+\pi^+\pi^-$	$4a_1 + 2a_2 + 2a_3 - 2a_5 - 2a_6$	$\Sigma^+\pi^-K^+$	$-2a_2 - 2a_3 + 2a_6$	$\Sigma^0 K^0 K^+$	$2\sqrt{2}a_4$
$\Sigma^+ K^0 \bar{K}^0$	$4a_1 + 2a_2 + 2a_3$	$\Sigma^+ K^0 \eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$	$\Sigma^- K^+ K^+$	$-4a_{4}$
$\Sigma^+ K^+ K^-$	$4a_1 - 2a_5$	$\Sigma^0\pi^+K^0$	$-\sqrt{2}a_2 - \sqrt{2}a_3 - 2\sqrt{2}a_4$	$p\pi^0 K^0$	$-\sqrt{2}a_2$
$\Sigma^+ \eta^0 \eta^0$	$4a_1 + \frac{2a_2}{3} + \frac{2a_3}{3} + \frac{2a_4}{3} - \frac{2a_5}{3}$	$\Sigma^0 K^+ \eta^0$	$\frac{\sqrt{3}a_2}{3} + \frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3}$	$p\pi^-K^+$	$2a_2$
$\Sigma^0 \pi^0 \pi^+$	$-2a_4 - 2a_6$	$\Sigma^-\pi^+K^+$	$4a_4 + 2a_6$	$pK^0\eta^0$	$-\frac{\sqrt{6}a_2}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Sigma^0 K^+ \bar{K}^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5$	$p\pi^0\pi^0$	$-4a_1 - 2a_2 + 2a_5$	$n\pi^0 K^+$	$-\sqrt{2}a_2$
$\Sigma^-\pi^+\pi^+$	$-4a_4 - 4a_6$	$p\pi^0\eta^0$	$\frac{2\sqrt{3}a_2}{3} - \frac{2\sqrt{3}a_4}{3} + \frac{2\sqrt{3}a_5}{3}$	$n\pi^+K^0$	$-2a_{2}$
$\Xi^0 \pi^0 K^+$	$-\sqrt{2}a_5$	$p\pi^+\pi^-$	$-4a_1 - 2a_2 + 2a_5$	$nK^+\eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{2\sqrt{6}a_4}{3}$
$\Xi^0\pi^+K^0$	$-2a_5 - 2a_6$	pK^+K^-	$-4a_1 - 2a_3 + 2a_5 + 2a_6$		
$\Xi^-\pi^+K^+$	$-2a_{6}$	$p\eta^0\eta^0$	$-4a_1 - \frac{2a_2}{3} - \frac{8a_3}{3} + \frac{4a_4}{3} + \frac{2a_5}{3}$		
$p\pi^0 \bar{K}^0$	$-\sqrt{2}a_3 - \sqrt{2}a_4$	$n\pi^+\eta^0$	$\frac{2\sqrt{6}a_2}{3} - \frac{2\sqrt{6}a_4}{3} + \frac{2\sqrt{6}a_5}{3}$		
$p\pi^+K^-$	$2a_3 - 2a_6$	$nK^+\bar{K}^0$	$2a_2 + 2a_4 + 2a_5 + 2a_6$		
$p ar{K}^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_4}{3}$	$\Lambda^0 \pi^0 K^+$	$\frac{\sqrt{3}a_2}{3} - \frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_5}{3}$		
$n\pi^+\bar{K}^0$	$-2a_4 - 2a_6$	$\Lambda^0 \pi^+ K^0$	$\frac{\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_5}{3}$		
$\Lambda^0\pi^+\eta^0$	$-\frac{2a_2}{3} + \frac{2a_3}{3} - \frac{2a_5}{3} - 2a_6$	$\Lambda^0 K^+ \eta^0$	$-\frac{a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3} + 2a_6$		
$\Lambda^0 K^+ \bar{K}^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} - \frac{\sqrt{6}a_5}{3}$				

T-amplitudes of $\Xi_c^+ \to \mathbf{B_n} M M'$

CF mode	T-amp	CS mode	$T-amp/t_c$	DCS mode	$T-amp/t_c^2$
$\Sigma^+ \pi^0 \bar{K}^0$	$-\sqrt{2}a_2 - \sqrt{2}a_4$	$\Sigma^+ \pi^0 \pi^0$	$-4a_1 - 2a_3 + 2a_5$	$\Sigma^+ \pi^0 K^0$	$-\sqrt{2}a_3$
$\Sigma^+\pi^+K^-$	$2a_2$	$\Sigma^+ \pi^0 \eta^0$	$\frac{2\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3} + \frac{2\sqrt{3}a_5}{3}$	$\Sigma^+\pi^-K^+$	$2a_3 - 2a_6$
$\Sigma^+ \bar{K}^0 \eta^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_4}{3}$	$\Sigma^+\pi^+\pi^-$	$-4a_1 - 2a_3 + 2a_5 + 2a_6$	$\Sigma^+ K^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Sigma^0\pi^+\bar{K}^0$	$\sqrt{2}a_4$	$\Sigma^+ K^+ K^-$	$-4a_1 - 2a_2 + 2a_5$	$\Sigma^0 \pi^0 K^+$	$a_3 - 2a_6$
$\Xi^0\pi^0\pi^+$	$\sqrt{2}a_4$	$\Sigma^+ \eta^0 \eta^0$	$-4a_1 - \frac{8a_2}{3} - \frac{2a_3}{3} + \frac{4a_4}{3} + \frac{2a_5}{3}$	$\Sigma^0 \pi^+ K^0$	$\sqrt{2}a_3$
$\Xi^0\pi^+\eta^0$	$-\frac{2\sqrt{6}a_2}{3}-\frac{\sqrt{6}a_4}{3}$	$\Sigma^0 \pi^0 \pi^+$	$2a_6$	$\Sigma^0 K^+ \eta^0$	$-\frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3}$
$\Xi^0 K^+ \bar{K}^0$	$-2a_{2}$	$\Sigma^0 \pi^+ \eta^0$	$-\frac{2\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3} - \frac{2\sqrt{3}a_5}{3}$	$\Sigma^{-}\pi^{+}K^{+}$	$-2a_{6}$
$\Xi^-\pi^+\pi^+$	$-4a_{4}$	$\Sigma^0 K^+ \bar{K}^0$	$-\sqrt{2}a_3 - \sqrt{2}a_4 - \sqrt{2}a_5$	$\Xi^0 K^0 K^+$	$-2a_4 - 2a_6$
$p\bar{K}^0\bar{K}^0$	$4a_4$	$\Sigma^{-}\pi^{+}\pi^{+}$	$4a_6$	$\Xi^-K^+K^+$	$-4a_4 - 4a_6$
$\Lambda^0 \pi^+ \bar{K}^0$	$\sqrt{6}a_4$	$\Xi^0 \pi^0 K^+$	$\sqrt{2}a_2 - \sqrt{2}a_4 + \sqrt{2}a_5$	$p\pi^0\pi^0$	$4a_1 - 2a_5$
		$\Xi^0\pi^+K^0$	$2a_2 + 2a_4 + 2a_5 + 2a_6$	$p\pi^0\eta^0$	$-\frac{2\sqrt{3}a_{5}}{3}$
		$\Xi^0 K^+ \eta^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_4}{3} - \frac{\sqrt{6}a_5}{3}$	$p\pi^+\pi^-$	$4a_1 - 2a_5$
		$\Xi^-\pi^+K^+$	$4a_4 + 2a_6$	$pK^0\bar{K}^0$	$4a_1 + 2a_2 + 2a_3$
		$p\pi^0 \bar{K}^0$	$\sqrt{2}a_2 + \sqrt{2}a_3$	pK^+K^-	$4a_1 + 2a_2 + 2a_3 - 2a_5 - 2a_6$
		$p\pi^+K^-$	$-2a_2 - 2a_3 + 2a_6$	$p\eta^0\eta^0$	$4a_1 + \frac{8a_2}{3} + \frac{8a_3}{3} + \frac{8a_4}{3} - \frac{2a_5}{3}$
		$p ar{K}^0 \eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{4\sqrt{6}a_4}{3}$	$n\pi^+\eta^0$	$-\frac{2\sqrt{6}a_{5}}{3}$
		$n\pi^+\bar{K}^0$	$2a_6$	$nK^+\bar{K}^0$	$-2a_5 - 2a_6$
		$\Lambda^0 \pi^+ \eta^0$	$-\frac{4a_2}{3} - \frac{2a_3}{3} + 2a_4 + \frac{2a_5}{3} + 2a_6$	$\Lambda^0 \pi^0 K^+$	$\frac{2\sqrt{3}a_2}{3} + \frac{\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_5}{3}$
		$\Lambda^0 K^+ \bar{K}^0$	$\begin{aligned} -2a_2 - 2a_3 + 2a_6 \\ \frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{4\sqrt{6}a_4}{3} \\ 2a_6 \\ -\frac{4a_2}{3} - \frac{2a_3}{3} + 2a_4 + \frac{2a_5}{3} + 2a_6 \\ -\frac{2\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_3}{3} - \sqrt{6}a_4 + \frac{\sqrt{6}a_5}{3} \end{aligned}$	$\Lambda^0 \pi^+ K^0$	$\frac{2\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{2\sqrt{6}a_5}{3}$

T-amplitudes of $\Xi_c^0 \to {\bf B_n} MM'$

CF mode	T-amp	CS mode	$T-amp/t_c$	DCS mode	$T-amp/t_c^2$
$\Sigma^+\pi^0K^-$	$\sqrt{2}a_5$	$\Sigma^+ \pi^0 \pi^-$	$-\sqrt{2}a_6$	$\Sigma^+\pi^-K^0$	$-2a_{6}$
$\Sigma^+\pi^-\bar{K}^0$	$2a_5 + 2a_6$	$\Sigma^+\pi^-\eta^0$	$\frac{2\sqrt{6}a_{\delta}}{3} + \sqrt{6}a_{6}$	$\Sigma^0 \pi^0 K^0$	$a_3 - 2a_6$
$\Sigma^+ K^- \eta^0$	$-\frac{\sqrt{6}a_{\delta}}{3}$	$\Sigma^+ K^0 K^-$	$2a_{5}$	$\Sigma^0\pi^-K^+$	$-\sqrt{2}a_3$
$\Sigma^0 \pi^0 \bar{K}^0$	$a_2 + a_4 + a_5 + 2a_6$	$\Sigma^0 \pi^0 \pi^0$	$2\sqrt{2}a_1 + \sqrt{2}a_3 - \sqrt{2}a_5 - 2\sqrt{2}a_6$	$\Sigma^0 K^0 \eta^0$	$\frac{\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3}$
$\Sigma^0\pi^+K^-$	$-\sqrt{2}a_2 - \sqrt{2}a_5$	$\Sigma^0 \pi^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_4}{3} + \frac{\sqrt{6}a_5}{3} + \sqrt{6}a_6$	$\Sigma^-\pi^0 K^+$	$\sqrt{2a_3}$
$\Sigma^0 \bar{K}^0 \eta^0$	$\frac{\sqrt{3}a_2}{3} - \frac{\sqrt{3}a_4}{3} + \frac{\sqrt{3}a_5}{3}$	$\Sigma^0 \pi^+ \pi^-$	$2\sqrt{2}a_1 + \sqrt{2}a_3 - \sqrt{2}a_5$	$\Sigma^-\pi^+K^0$	$2a_3 - 2a_6$
$\Sigma^-\pi^+\bar{K}^0$	$2a_4 + 2a_6$	$\Sigma^0 K^0 \bar{K}^0$	$\sqrt{2}(2a_1 + a_2 + a_3 + a_4 - a_5)$	$\Sigma^- K^+ \eta^0$	$-\frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Xi^0 \pi^0 \eta^0$	$\frac{2\sqrt{3}a_2}{3} + \frac{2\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3}$	$\Sigma^0 K^+ K^-$	$2\sqrt{2}a_1 + \sqrt{2}a_2$	$\Xi^0 K^0 K^0$	$-4a_4 - 4a_6$
$\Xi^0\pi^+\pi^-$	$-4a_1 - 2a_2 - 2a_3$	$\Sigma^0 \eta^0 \eta^0$	$\sqrt{2}(2a_1 + \frac{4a_2}{3} + \frac{a_3}{3} - \frac{2a_4}{3} - \frac{a_5}{3})$	$\Xi^- K^0 K^+$	$-2a_4 - 2a_6$
$\Xi^0 K^0 \bar{K}^0$	$-2(2a_1 + a_2 + a_3)$	$\Sigma^-\pi^0\pi^+$	$-\sqrt{2}a_6$	$p\pi^-\eta^0$	$-\frac{2\sqrt{6}a_{5}}{3}$
	$-a_{5} - a_{6})$	$\Sigma^-\pi^+\eta^0$	$-\frac{2\sqrt{6}a_3}{3} + \frac{2\sqrt{6}a_4}{3} + \sqrt{6}a_6$	pK^0K^-	$-2a_{5}-2a_{6}$
$\Xi^0 K^+ K^-$	$-4a_1 + 2a_5$	$\Sigma^- K^+ \bar{K}^0$	$-2a_3 - 2a_4$	$n\pi^0\pi^0$	$4a_1 - 2a_5$
$\Xi^0 \eta^0 \eta^0$	$-2(2a_1 + \frac{a_2}{3} + \frac{a_3}{3})$	$\Xi^0\pi^-K^+$	$2a_2 + 2a_3 + 2a_5$	$n\pi^0\eta^0$	$\frac{2\sqrt{3}a_{\delta}}{3}$
	$+\frac{a_4}{3}-\frac{4a_5}{3})$	$\Xi^0 K^0 \eta^0$	$\sqrt{6}(-\frac{a_2}{3}-\frac{a_3}{3}+\frac{2a_4}{3}-\frac{a_5}{3}+a_6)$	$n\pi^+\pi^-$	$4a_1 - 2a_5$
$\Xi^-\pi^0\pi^+$	$\sqrt{2}a_4$	$\Xi^-\pi^0 K^+$	$\sqrt{2}a_3 - \sqrt{2}a_4 - \sqrt{2}a_6$	$nK^0\overline{K}^0$	$2(2a_1 + a_2 + a_3)$
$\Xi^-\pi^+\eta^0$	$-\frac{2\sqrt{6}a_3}{3}-\frac{\sqrt{6}a_4}{3}$	$\Xi^-\pi^+K^0$	$2a_3 + 2a_4$		$-a_{5} - a_{6})$
$\Xi^- K^+ \bar{K}^0$	$-2a_3 + 2a_6$	$p\pi^0K^-$	$-\sqrt{2}a_5 - \sqrt{2}a_6$	nK^+K^-	$4a_1 + 2a_2 + 2a_3$
$pK^-\bar{K}^0$	$2a_6$	$p\pi^-\bar{K}^0$	$-2a_{5}$	$n\eta^0\eta^0$	$4a_1 + \frac{8a_2}{3} + \frac{8a_3}{3}$
nK^0K^0	$4a_4 + 4a_6$	$pK^-\eta^0$	$\frac{\sqrt{6}a_{5}}{3} + \sqrt{6}a_{6}$		$+\frac{8a_4}{3}-\frac{2a_5}{3}$
1 1	$-\sqrt{3}(\frac{a_2}{3} + \frac{2a_3}{3} + a_4 + \frac{a_5}{3})$		$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5 - \sqrt{2}a_6$		
$\Lambda^0 \pi^+ K^-$	$\frac{\sqrt{6}a_2}{3} + \frac{2\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_5}{3}$	$n\pi^+K^-$	$-2a_2 - 2a_3 - 2a_5$	$\Lambda^0 \pi^- K^+$	$\sqrt{6}(\frac{2a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3})$
		$nK^0\eta^0$	$\sqrt{6}(\frac{a_2}{3} + \frac{a_3}{3} + \frac{4a_4}{3} + \frac{a_5}{3} + a_6)$		
			$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_6}{3})$		
		$\Lambda^0 \pi^0 \eta^0$	$\sqrt{2}(\frac{2a_2}{3} + \frac{a_3}{3} - a_4 - \frac{a_5}{3} - a_6)$		
		$\Lambda^0 \pi^+ \pi^-$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_5}{3})$		
			$\sqrt{6}(-2a_1 - a_2 - a_3 - a_4 + a_5)$		
		$\Lambda^0 K^+ K^-$	$\sqrt{6}(-2a_1 - \frac{a_2}{3} - \frac{2a_3}{3} + \frac{2a_5}{3})$		
		$\Lambda^0 \eta^0 \eta^0$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - a_3 + \frac{2a_4}{3})$		
			$+a_{5}+2a_{6})$		

The data of $\mathcal{B}(\Lambda_c^+ \rightarrow \mathbf{B_n} MM)$

	data	our results		data	our results
$10^2 \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$	3.4 ± 0.4	3.3 ± 1.0	$10^3 \mathcal{B}(\Lambda_c^+ \to \Xi^- K^+ \pi^+)$	6.2 ± 0.6	6.3 ± 0.6
$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0 \eta)$	1.6 ± 0.4	0.9 ± 0.1	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	6.1 ± 3.1	7.2 ± 2.0
$10^3 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+ \bar{K}^0)$	5.6 ± 1.1	5.7 ± 1.1	$10^3 \mathcal{B}(\Lambda_c^+ o p \pi^- \pi^+)$	4.2 ± 0.4	4.7 ± 1.6
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+ \eta)$	2.2 ± 0.5	2.1 ± 0.9	$10^4 \mathcal{B}(\Lambda_c^+ \to p K^- K^+)$	5.2 ± 1.2	5.1 ± 2.1
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-)$	4.4 ± 0.3	4.4 ± 3.5	$10^4 \mathcal{B}(\Lambda_c^+ \to p K^+ \pi^-)$	1.0 ± 0.1	1.0 ± 0.1
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+)$	1.9 ± 0.2	1.9 ± 1.3			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0)$	2.2 ± 0.8	1.0 ± 0.8			
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0 \pi^0)$	1.3 ± 0.1	1.3 ± 1.3			
$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^+ \pi^-)$	2.1 ± 0.6	3.0 ± 0.4			

14 data points above to fit with 11 real parameters:

 $a_1, a_2 e^{i\delta_{a_2}}, a_3 e^{i\delta_{a_3}}, a_4 e^{i\delta_{a_4}}, a_5 e^{i\delta_{a_5}}, a_6 e^{i\delta_{a_6}}$

 $(a_1, a_2, a_3, a_4, a_5, a_6) = (9.1 \pm 0.6, 4.6 \pm 0.2, 8.2 \pm 0.3, 2.9 \pm 0.4, 15.4 \pm 1.4, 4.2 \pm 0.2) \,\mathrm{GeV}^2$

 $(\delta_{a_2}, \delta_{a_3}, \delta_{a_4}, \delta_{a_5}, \delta_{a_6}) = (164 \pm 5, 135 \pm 5, -30 \pm 13, 24 \pm 3, 120 \pm 10)^{\circ}$

 $\chi^2/d.o.f = 8.4/3 = 2.8$

BRs of $\Lambda_c \rightarrow \mathbf{B_n} M_1 M_2$

CF mode	our result	CS mode	our result	DCS mode	our result
$10^2 \mathcal{B}_{\Sigma^+ \pi^0 \eta^0}$	3.5 ± 0.8	$10^4 \mathcal{B}_{\Sigma^+\pi^0 K^0}$	8.6 ± 2.6	$10^6\mathcal{B}_{\Sigma^+K^0K^0}$	2.0 ± 0.5
$10^3 \mathcal{B}_{\Sigma^+ K^0 \bar{K}^0}$	5.2 ± 1.2	$10^5 \mathcal{B}_{\Sigma^+ K^0 \eta^0}$	3.5 ± 0.4	$10^6 \mathcal{B}_{\Sigma^0 K^0 K^+}$	2.0 ± 0.6
$10^3 \mathcal{B}_{\Sigma^+ K^+ K^-}$	3.0 ± 0.7	$10^3 \mathcal{B}_{\Sigma^0 \pi^0 K^+}$	1.2 ± 0.3	$10^6 \mathcal{B}_{\Sigma^- K^+ K^+}$	2.0 ± 0.5
$10^7 \mathcal{B}_{\Sigma^+ \eta^0 \eta^0}$	2.8 ± 0.6	$10^4 \mathcal{B}_{\Sigma^0 \pi^+ K^0}$	8.3 ± 2.5	$10^5 \mathcal{B}_{p\pi^0 K^0}$	5.0 ± 0.5
$10^2 \mathcal{B}_{\Sigma^0 \pi^+ \eta^0}$	3.4 ± 0.8	$10^5 \mathcal{B}_{\Sigma^0 K^+ \eta^0}$	1.8 ± 0.2	$10^5 \mathcal{B}_{n\pi^0 K^+}$	5.0 ± 0.5
$10^2 \mathcal{B}_{\Sigma^0 K^+ \bar{K}^0}$	0.5 ± 0.1	$10^4 \mathcal{B}_{\Sigma^- \pi^+ K^+}$	3.3 ± 2.3	$10^4 \mathcal{B}_{n\pi^+K^0}$	1.0 ± 0.1
$10^2\mathcal{B}_{\Xi^0\pi^0K^+}$	4.5 ± 0.8	$10^{3} \mathcal{B}_{p\pi^{0}\pi^{0}}$	2.4 ± 0.8		
$10^2 \mathcal{B}_{\Xi^0 \pi^+ K^0}$	8.7 ± 1.7	$10^3 \mathcal{B}_{p\pi^0\eta^0}$	3.7 ± 0.9		
$10^2 \mathcal{B}_{p\pi^0 \bar{K}^0}$	2.8 ± 0.6	$10^3 \mathcal{B}_{pk^0 \bar{K}^0}$	4.3 ± 1.0		
$10^2 \mathcal{B}_{n\pi^+ \bar{K}^0}$	0.9 ± 0.8	$10^4 \mathcal{B}_{p\eta^0\eta^0}$	4.7 ± 1.0		
		$10^3 \mathcal{B}_{n\pi^+\eta^0}$	7.3 ± 1.8		
		$10^3 \mathcal{B}_{nK^+ \bar{K}^0}$	5.9 ± 1.3		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^0 K^+}$	4.5 ± 0.8		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^+ K^0}$	8.8 ± 1.5		
		$10^4 \mathcal{B}_{\Lambda^0 K^+ \eta^0}$	1.9 ± 0.6		

BRs of $\Xi_c^+ \to \mathbf{B_n} M_1 M_2$

CF mode	our result	CS mode	our result	DCS mode	our result
$10^3 \mathcal{B}_{\Sigma^+ \pi^0 \bar{K}^0}$	5.4 ± 4.0	$10^3 \mathcal{B}_{\Sigma^+ \pi^0 \eta^0}$	9.6 ± 1.8	$10^4 \mathcal{B}_{\Sigma^+ \pi^0 K^0}$	2.6 ± 0.2
$10^2 \mathcal{B}_{\Sigma^+\pi^+K^-}$	6.1 ± 0.6	$10^3 \mathcal{B}_{\Sigma^+\pi^+\pi^-}$	5.1 ± 2.0	$10^4 \mathcal{B}_{\Sigma^+\pi^-K^+}$	1.4 ± 0.3
$10^3 \mathcal{B}_{\Sigma^+ \bar{K}^0 \eta^0}$	4.6 ± 0.6	$10^3 \mathcal{B}_{\Sigma^+ K^0 \bar{K}^0}$	5.4 ± 1.3	$10^6 \mathcal{B}_{\Sigma^+ K^0 \eta^0}$	2.0 ± 1.4
$10^2 \mathcal{B}_{\Sigma^0 \pi^+ K^0}$	1.2 ± 0.3	$10^3 \mathcal{B}_{\Sigma^+ K^+ K^-}$	1.0 ± 0.4	$10^6 \mathcal{B}_{\Sigma^0 \pi^0 K^+}$	7.6 ± 5.9
$10^2\mathcal{B}_{\Xi^0\pi^0\pi^+}$	1.9 ± 0.5	$10^4 \mathcal{B}_{\Sigma^+ \eta^0 \eta^0}$	1.8 ± 1.0	$10^4 \mathcal{B}_{\Sigma^0 \pi^+ K^0}$	2.5 ± 0.2
$10^2 \mathcal{B}_{\Xi^0 \pi^+ \eta^0}$	1.0 ± 0.2	$10^3 \mathcal{B}_{\Sigma^0 \pi^0 \pi^+}$	5.6 ± 0.5	$10^6 \mathcal{B}_{\Sigma^0 K^+ \eta^0}$	1.0 ± 0.7
$10^3 \mathcal{B}_{\Xi^0 K^+ \bar{K}^0}$	4.9 ± 0.5	$10^3 \mathcal{B}_{\Sigma^0 \pi^+ \eta^0}$	9.4 ± 1.8	$10^4 \mathcal{B}_{\Sigma^- \pi^+ K^+}$	1.3 ± 0.1
$10^2 \mathcal{B}_{p\bar{K}^0\bar{K}^0}$	4.3 ± 1.2	$10^3 \mathcal{B}_{\Sigma^0 K^+ \bar{K}^0}$	4.4 ± 0.9	$10^6\mathcal{B}_{\Xi^0K^0K^+}$	3.0 ± 1.9
$10^2 \mathcal{B}_{\Lambda^0 \pi^+ \bar{K}^0}$	4.6 ± 1.2	$10^2 \mathcal{B}_{\Sigma^- \pi^+ \pi^+}$	1.1 ± 0.1	$10^6 \mathcal{B}_{\Xi^- K^+ K^+}$	5.7 ± 3.2
		$10^3\mathcal{B}_{\Xi^0\pi^0K^+}$	6.4 ± 1.6	$10^4 \mathcal{B}_{p\pi^0\pi^0}$	7.2 ± 1.8
		$10^2\mathcal{B}_{\Xi^0\pi^+K^0}$	1.9 ± 0.4	$10^{3} B_{p\pi^{0}\eta^{0}}$	1.1 ± 0.2
		$10^4 \mathcal{B}_{\Xi^0 K^+ \eta^0}$	1.3 ± 0.3	$10^3 \mathcal{B}_{p\pi^+\pi^-}$	1.4 ± 0.4
		$10^4 \mathcal{B}_{\Xi^-\pi^+K^+}$	8.3 ± 5.3	$10^4 \mathcal{B}_{pK^0 \overline{K}^0}$	7.7 ± 1.7
		$10^2 \mathcal{B}_{p\pi^0 \bar{K}^0}$	2.4 ± 0.2	$10^4 \mathcal{B}_{pK^+K^-}$	1.6 ± 1.2
		$10^2 \mathcal{B}_{p\pi^+K^-}$	2.4 ± 0.3	$10^5 \mathcal{B}_{p\eta^0\eta^0}$	9.3 ± 4.5
		$10^3 \mathcal{B}_{n\pi^+ \bar{K}^0}$	5.5 ± 0.5	$10^3 \mathcal{B}_{n\pi^+\eta^0}$	2.1 ± 0.4
		$10^2 \mathcal{B}_{\Lambda^0 \pi^+ \eta^0}$	1.7 ± 0.3	$10^3 \mathcal{B}_{nK^+ \bar{K}^0}$	1.6 ± 0.3
		$10^3 \mathcal{B}_{\Lambda^0 K^+ \overline{K}^0}$	4.7 ± 1.0	$10^4 \mathcal{B}_{\Lambda^0 \pi^0 K^+}$	5.0 ± 1.0
				$10^4 \mathcal{B}_{\Lambda^0 \pi^+ K^0}$	9.7 ± 2.0
				$10^5 \mathcal{B}_{\Lambda^0 K^+ \eta^0}$	9.0 ± 2.2

BRs of $\Xi_c^0 \to \mathbf{B}_{\mathbf{n}} M_1 M_2$

CF mode	our result	CS mode	our result	DCS mode	our result
$10^2 \mathcal{B}_{\Sigma^+\pi^0 K^-}$	8.8 ± 1.5	$10^4 \mathcal{B}_{\Sigma^+\pi^0\pi^-}$	7.2 ± 0.7	$10^5\mathcal{B}_{\Sigma^+\pi^-K^0}$	3.4 ± 0.3
$10^1 \mathcal{B}_{\Sigma^+\pi^-\bar{K}^0}$	1.8 ± 0.3	$10^3 B_{\Sigma^+\pi^-\eta^0}$	5.7 ± 0.9	$10^5 \mathcal{B}_{\Sigma^0 \pi^- K^+}$	6.5 ± 0.5
$10^3 \mathcal{B}_{\Sigma^+ K^- \eta^0}$	5.2 ± 0.9	$10^3 B_{\Sigma^+ K^0 K^-}$	2.4 ± 0.4	$10^7 \mathcal{B}_{\Sigma^0 K^0 \eta^0}$	2.6 ± 1.7
$10^2 \mathcal{B}_{\Sigma^0 \pi^0 \bar{K}^0}$	4.4 ± 1.1	$10^3 \mathcal{B}_{\Sigma^0 \pi^0 \pi^0}$	1.3 ± 0.3	$10^5 \mathcal{B}_{\Sigma^-\pi^0 K^+}$	6.4 ± 0.5
$10^2 \mathcal{B}_{\Sigma^0 \pi^+ K^-}$	5.4 ± 1.2	$10^3 \mathcal{B}_{\Sigma^0 \pi^0 \eta^0}$	1.9 ± 0.4	$10^5 \mathcal{B}_{\Sigma^-\pi^+K^0}$	3.4 ± 0.7
$10^3 \mathcal{B}_{\Sigma^0 \bar{K}^0 \eta^0}$	1.4 ± 0.3	$10^4 \mathcal{B}_{\Sigma^0 K^+ K^-}$	9.7 ± 1.7	$10^7 \mathcal{B}_{\Sigma^- K^+ \eta^0}$	5.1 ± 3.4
$10^2\mathcal{B}_{\Xi^0\pi^0\pi^0}$	8.1 ± 1.9	$10^5 \mathcal{B}_{\Sigma^0 \eta^0 \eta^0}$	2.3 ± 1.2	$10^6\mathcal{B}_{\Xi^0K^0K^0}$	1.5 ± 1.1
$10^2 \mathcal{B}_{\Xi^0 \pi^0 \eta^0}$	1.2 ± 0.2	$10^4 \mathcal{B}_{\Sigma^-\pi^0\pi^+}$	7.1 ± 0.6	$10^7 \mathcal{B}_{\Xi^- K^0 K^+}$	7.1 ± 6.7
$10^1\mathcal{B}_{\Xi^0\pi^+\pi^-}$	1.3 ± 0.3	$10^4 \mathcal{B}_{\Sigma^-\pi^+\eta^0}$	6.3 ± 2.0	$10^4 \mathcal{B}_{p\pi^-\eta^0}$	5.4 ± 0.9
$10^3 B_{\Xi^0 K^+ K^-}$	3.6 ± 0.9	$10^4 \mathcal{B}_{\Sigma^- K^+ \bar{K}^0}$	2.9 ± 0.6	$10^4 B_{pK^0K^-}$	4.2 ± 0.7
$10^4 \mathcal{B}_{\Xi^0 \eta^0 \eta^0}$	2.2 ± 0.9	$10^3 \mathcal{B}_{\Xi^0 \pi^0 K^0}$	3.0 ± 0.7	$10^4 \mathcal{B}_{n\pi^0\pi^0}$	1.8 ± 0.5
$10^3 \mathcal{B}_{\Xi^-\pi^0\pi^+}$	4.6 ± 1.2	$10^3 \mathcal{B}_{\Xi^0 \pi^- K^+}$	4.8 ± 0.9	$10^4 B_{n\pi^0\eta^0}$	2.7 ± 0.5
$10^2 \mathcal{B}_{\Xi^-\pi^+\eta^0}$	1.1 ± 0.1	$10^4 \mathcal{B}_{\Xi^-\pi^0 K^+}$	6.2 ± 1.3	$10^4 B_{n\pi^+\pi^-}$	3.6 ± 0.9
$10^2 \mathcal{B}_{pK-\bar{K}^0}$	1.2 ± 0.1	$10^4 \mathcal{B}_{\Xi^-\pi^+K^0}$	7.2 ± 1.5	$10^5 \mathcal{B}_{nK^0 \bar{K}^0}$	3.9 ± 2.9
$10^3 \mathcal{B}_{n\bar{K}^0\bar{K}^0}$	6.4 ± 6.3	$10^3 B_{p\pi^0 K^-}$	9.5 ± 1.6	$10^4 \mathcal{B}_{nK^+K^-}$	2.0 ± 0.5
$10^2 \mathcal{B}_{\Lambda^0 \pi^0 \bar{K}^0}$	2.0 ± 0.6	$10^2 B_{p\pi-\bar{K}^0}$	1.9 ± 0.3	$10^5 B_{n\eta^0\eta^0}$	2.4 ± 1.2
$10^2 \mathcal{B}_{\Lambda^0 \pi^+ K^-}$	5.9 ± 0.8	$10^{3}B_{pK^{-}\eta^{0}}$	1.8 ± 0.3	$10^4 \mathcal{B}_{\Lambda^0 \pi^0 K^0}$	1.3 ± 0.3
		$10^3 B_{n\pi^0 \bar{K}^0}$	5.2 ± 1.3	$10^4 \mathcal{B}_{\Lambda^0 \pi^- K^+}$	2.5 ± 0.5
		$10^2 B_{n\pi^+K^-}$	1.5 ± 0.3	$10^5 B_{\Lambda^0 K^0 \eta^0}$	2.3 ± 0.6
		$10^3 B_{n\bar{K}^0\eta^0}$	1.9 ± 0.6		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^0 \pi^0}$	5.3 ± 1.5		
		$10^3 \mathcal{B}_{\Lambda^0 \pi^0 \eta^0}$	2.2 ± 0.4		
		$10^2 B_{\Lambda^0 \pi^+ \pi^-}$	1.1 ± 0.3		
		$10^4 \mathcal{B}_{\Lambda^0 K^+ K^-}$	3.0 ± 2.5		
		$10^4 \mathcal{B}_{\Lambda^0 \eta^0 \eta^0}$	2.4 ± 1.4		

Summary

- We have studied the weak decays of charmed baryons **B**_c = (Ξ⁰_c, −Ξ⁺_c, Λ⁺_c) based on SU(3)_F flavor symmetry.
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of **B**_c, such as $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$
- ← For the two-body decays of $\mathbf{B}_{c} \rightarrow \mathbf{B}_{n}\mathbf{M}$, we have obtained a good fit for the 7 parameters without H(15). By including the factorizable contributions from H(15), we have found that Br($\Lambda_{c}^{+} \rightarrow p\pi^{0}$)=(1.3±0.7)×10⁻⁴, which agrees with the current experimental upper limit of 2.7×10⁻⁴.
- ♥ We have examined K_S-K_L asymmetries in the charmed baryon decays, which agree with those in the literature.
- By considering only the S-wave contributions from M_1M_2 and neglecting $H(\overline{15})$ as well as the nonresonant data points, we have systematically predicted the three-body decays of $\mathbf{B}_c \rightarrow \mathbf{B}_m M_1 M_2$ for the first time.
- Rich physics for Charmed Baryons at BESIII, LHCb, BELLEII

More theoretical and experimental studies are needed.

謝謝!

