

Recent Belle results on (charmed) baryons and Belle II prospects of baryons

Chengping Shen Beihang University, Beijing

第二届理论与实验联合研讨会 兰州大学,12月15-16日,2018

- Introduction
- Singly (Charmed) Baryon results at Belle
- Belle II status
- Prospects of baryon study at Belle II
- Summary

Belle II will provide a significantly larger data sample (x50 Belle) that will allow to continue the investigation with a much more powerful instrument

The Physics Program

- → a (Super) B-factory (~ $1.1 \times 10^9 \text{ BB}$ pairs per ab⁻¹);
- a (Super) charm factory (~ $1.3 \ge 10^9 \text{ cc}$ pairs per ab⁻¹);
- a (Super) τ factory (~0.9 x 10⁹ $\tau^+\tau^-$ pairs per ab⁻¹);
- → thanks to the Initial State Radiation, we can effectively scan the range [0.5 – 10] GeV and measure the e⁺e⁻ → light hadrons cross-section very precisely;
- finally we can exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

The Charmed Baryon Physics

- The weak decay of charmed baryon has not been understood well.
- Three diagrams contribute in the tree level, but their strengths are not known.
- Ground state charm baryon is a good laboratory for studying strange baryons as decay proceed via $c \rightarrow s$ transition.
- Belle has collected $\sim 1 \text{ ab}^{-1} \text{ e}^+\text{e}^-$ data samples (mainly at $\Upsilon(4S)$).
 - $10^9 e^+e^- \rightarrow c\bar{c}$ samples
 - $7.7 \times 10^8 B\overline{B}$ samples
- Huge data sample enable to study various charmed baryons.

Baryon production at B-factory

Baryons produced via fragmentation

- Charmed baryons rather direct
- Hyperons later stage of fragmentation

Huge statistics

B is efficiently produced via Y(4s)

Once bottom is produced, it favorably decays into charm.

Observation of an excited Ω^- baryon

$\Omega^- = s s s (S=-3, I=0)$

PRL 121, 052003 (2018)

1. Ω^- excited states have proved difficult to find

- Only one excited Ω^- states, $\Omega(2250)$, has been confirmed until now.
- In addition, the evidence for two other states of Ω^- were reported.
- These Ω^- excited states' masses are much higher than the ground state (>600MeV).
- 2. $\Omega^{*-} \rightarrow \Omega^{-} + \pi^{0}$ is highly suppressed since Ω^{-} is isospin zero
- 3. Preferred modes
- $\Omega^{*-} \rightarrow \Xi^- + K_S^0 \checkmark$
- $\Omega^{*-} \rightarrow \Xi^0 + K^- \checkmark$
- low-lying states
- Analogous to $\Omega_c^0 \to \Xi_c^+ K^-$

[R. Aaij et al. PRL 118, 182001 (2017)] [J. Yelton et al. PRD 97, 051102 (2018)]

Data sample	Luminosity(fb ⁻¹)	Events (× 10 ⁸)
$\Upsilon(1S)$	5.7	1.02
Υ(2 <i>S</i>)	24.9	1.58
Y(3S)	2.9	-

- The decays of these narrow resonances proceed via gluons.
- The production of baryon are enhanced.

Observation of an excited Ω^- baryon

Results & Summary

 $\mathcal{R} = \frac{\mathcal{B}(\Omega^{*-} \to \Xi^0 K^-)}{\mathcal{B}(\Omega^{*-} \to \Xi^- \overline{K}^0)} = 1.2 \pm 0.3$

Data	Mode	Mass (MeV/c^2)	Yield	$\Gamma(MeV)$	χ^2 /d.o.f.	n_{σ}
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-, \Xi^- K^0_S$	2012.4 ± 0.7	$242 \pm 48, \ 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
	(simultaneous)					
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-$	2012.6 ± 0.8	239 ± 53	6.1 ± 2.6	115/114	6.9
$\Upsilon(1S, 2S, 3S)$	$\Xi^- K_S^0$	2012.0 ± 1.1	286 ± 87	6.8 ± 3.3	101/114	4.4
Other	$\Xi^0 K^-$	2012.4 (Fixed)	209 ± 63	6.4 (Fixed)	102/116	3.4
Other	$\Xi^- K_S^0$	2012.4 (Fixed)	153 ± 89	6.4 (Fixed)	133/116	1.7

PRL 121, 052003 (2018)

- The gap in the spectrum between the ground state and this excited state (\sim 340 MeV) is smaller than other Ω^- excited states, which is more close to the negative-parity orbital excitations of many other baryons.
- The narrow width observed implies that the quantum number $J^P = \frac{3}{2}^-$ is preferable.

Theoretical interpretation for the $\Omega^{\ast}(2012)$

It is generally accepted that $\Omega^*(2012)$ is 1P orbital excitation of the ground state Ω baryon with three strange quark, whose quantum numbers are $J^P = \frac{3}{2}^{-}$.

Notably, the newly observed $\Omega^*(2012)$ is revealed as a KE(1530) hadronic molecule. [PRD 98, 054009 (2018), PRD 98, 056013 (2018), arXiv:1807.02145, arXiv:1807.06485, arXiv:1807.06485]

From PRD 98, 056013 (2018)

FIG. 1: The three-body decays of $\Omega(2012)$ in the $K \Xi(1530)$ molecular picture.

The $K\Xi\pi$ three-body component is largely dominant.

Mode	$=\frac{3}{2}^{-}$ (K Ξ (1530))	
	Widths (MeV)	Branch Ratio(%)
$K\Xi$	0.4	14.3
$K\pi\Xi$	2.4	85.7
Total	2.8	100.0

The number of expected $\Omega(2012)$ events at Belle

$N^{\text{expected}} = N_{\Omega}^{\text{total}} \times \mathcal{B}^{\text{product}} \times \varepsilon \times \mathcal{B}(\Omega(2012) \to K\Xi/K\Xi\pi)$

Channel	3	$\mathcal{B}^{ ext{decay}}$	$\mathcal{B}(\Omega(2012) \rightarrow K\Xi/K\Xi\pi)$	N ^{obs}	N ^{expected}
$\Xi^- K_S^0$	15.7%	$\mathcal{B}(K^0_S \to \pi^+\pi^-) \times \mathcal{R}(\bar{K}^0 \to K^0_S)$	6.5%	279	-
$\Xi^0 K^-$	4.0%	$\mathcal{B}(\pi^0 o \gamma \gamma)$	7.8%	242	
$\Xi^- K^- \pi^+$	9.4%	-	28.6%	-	2091
$\Xi^- K^0_S \pi^0$	1.5%	$ \begin{aligned} \mathcal{B}(K_{S}^{0} \to \pi^{+}\pi^{-}) &\times \mathcal{B}(\pi^{0} \to \gamma\gamma) \\ &\times \mathcal{R}(\bar{K}^{0} \to K_{S}^{0}) \end{aligned} $	14.3%	-	55
$\Xi^0 K_S^0 \pi^-$	2.3%	$ \begin{aligned} \mathcal{B}(\pi^0 \to \gamma \gamma) \times \mathcal{B}(K^0_S \to \pi^+ \pi^-) \\ & \times \mathcal{R}(\bar{K}^0 \to K^0_S) \end{aligned} $	28.6%	-	177
$\Xi^0 K^- \pi^0$	0.8%	$\mathcal{B}(\pi^0 \to \gamma \gamma) \times \mathcal{B}(\pi^0 \to \gamma \gamma)$	14.3%	_	82

- $\mathcal{B}(\Omega(2012) \to \text{KE}): \mathcal{B}(\Omega(2012) \to \text{KE}\pi) = 14.3: 85.7 \text{ in Ref.}[arxiv:1807.00997].$
- $\mathcal{T}[\Xi^{-}\overline{K}^{0}]: \mathcal{T}[\Xi^{0}K^{-}] = 1: 1.2 \text{ from PRL121, 052003 (2018)}$
- The isospin analysis shows $\mathcal{T}[\Xi^-K^-\pi^+]$: $\mathcal{T}[\Xi^0\overline{K}^0\pi^0]$: $\mathcal{T}[\Xi^0\overline{K}^0\pi^-]$: $\mathcal{T}[\Xi^0K^-\pi^0] = 2:1:2:1$
- In the calculation of \mathcal{B}^{decay} , the common \mathcal{B} , e.g., $\mathcal{B}(\Lambda \to p\pi^-)$ is cancelled. $\mathcal{R}(\overline{K}^0 \to K_S^0) = 0.5$
- If theoretical predictions are correct, we will most likely observe $\Omega(2012)_{11}$ in mode $\Omega(2012) \rightarrow \Xi^- K^- \pi^+$.

Observation of $\Xi^0(1620)$ and evidence for $\Xi^0(1690)$

List of E(S=-2) particles from PDG [arXiv:1810.06181 [hep-ex]]

				Status as seen in —					
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$ Other channels			
$\Xi(1318)$ $\Xi(1530)$ $\Xi(1620)$	$\frac{1/2+}{3/2+}$	**** **** *	**** *			Decays weakly			
$\begin{array}{c} \Xi(1690) \\ \Xi(1820) \\ \Xi(1950) \\ \Xi(2030) \\ \Xi(2120) \\ \Xi(2250) \\ \Xi(2370) \end{array}$	3/2-	*** *** *** * ** **	** **	*** *** ** *	** ** ***	 NOT much is known about Ξ* Not found ½-? With L =1 Ξ(1620) and Ξ(1690) are candidates Ξπ is possible mode 			
$\Xi(2500)$		*		*	*	3-body decays			

- **** Existence is certain, and properties are at least fairly well explored.
- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.
- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Status of the $\Xi(1620)$

One star: But !! Evidence of existence is poor J.K.Hassall says "no evidence" E. Briefel, PRD 16, 2706 (1977) In NPB189 (1981) 397

The $\Xi^-\pi^+$ effective-mass distributions for the reaction $K^-p \rightarrow \Xi^-\pi^+K^0$

Search for $\Xi^0(1620)$ and $\Xi^0(1690)$ at Belle

[arXiv:1810.06181]

Search for $\Xi^0(1620)$ and $\Xi^0(1690)$ at Belle in below channel:

Data set: $E_c^+ \rightarrow E^{*0}\pi^+, E^{*0} \rightarrow E^-\pi^+_{\text{Total 980fb}^{-1}}$

Data sample	Luminosity(fb ⁻¹)	Data sample	Luminosity(fb ⁻¹)
Υ(1 <i>S</i>)	5.74	Υ(2 <i>S</i>)	24.91
Υ(3 <i>S</i>)	24.9	<i>e</i> + <i>e</i> − at √ <i>s</i> =10.52GeV	89.5
e^+e^- at \sqrt{s} =10.58GeV	711.0	e^+e^- at \sqrt{s} =10.867GeV	121.4

Crucial Selection criteria:

- To purify the Ξ_c^+ samples, the scaled momentum $x_p = \frac{p_{CM}}{\sqrt{\frac{1}{4}s m(\Xi_c^+)^2}} < 0.5$
- The retained Ξ^- candidates are combined with the lower and higher momentum pions, as labeled π_L^+ and π_H^+ .
- A vertex fit is applied to the $\mathcal{Z}_c^+ \xrightarrow{\tau} \mathcal{Z}^- \pi^+ \pi^+$ decay, and the $\chi^2 < 50$

Observation of $\Xi^0(1620)$ and evidence for $\Xi^0(1690)$

$\Xi^0(1620)$ state					
Mass (MeV/c²)	1610.4±6.0 ^{+5.9}				
Width (MeV)	$59.9 \pm 4.8^{+2.8}_{-3.0}$				

[arXiv:1810.06181]

In the simultaneous fit

- The E⁰(1530) and E⁰(1690) signals are modeled with P- and S-wave relativistic BW functions.
- The E⁰(1620) signal is modeled with the S-wave relativistic BW function.
- The interference between ⁰(1620) and the S-wave non- resonant process is taken into account.
- The combinatorial backgrounds are described by a threshold.

When the S-wave (P-wave) relativistic BW with fixed mass and width is used as the fitting function, the significance for $\Xi^0(1690)$ is 4.6 σ (4.0 σ).

Double-Cabibbo suppressed decay $\Lambda_c^+ \rightarrow p K^+ \pi^-$

- Weak decay amplitude of a charm quark
 - c → s: cos θ_c ~ 1 d: sin θ_c ~ 0.23 ← Cabibbo suppression
 - At the same time, emitted W decays into a qqbar pair $u\overline{d}$: $\cos\theta_{c}$ $u\overline{s}$: $\sin\theta_{c}$
- So, the decay $c \rightarrow d(u\overline{s})$ is twice suppressed

- → Doubly Cabibbo-suppressed decay
- Naively, decay branch is O(tan⁴ θ_c) ~ 0.28% smaller compared to counterpart ($c \rightarrow s(\bar{d}u)$)

The first observation of DCS decay in Baryon

A new Λ excited states ?

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than $\Lambda,$ Σ resonances in this region
 - Λ(1670): 25-50 MeV
 - Σ(1660): 40-200 MeV
 - Σ(1670): 40-80 MeV
 - Λ(1690): ~60 MeV
- 2 independent groups claim there is a new narrow Λ^* resonance at this energy with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3/2^{+}$ (P₀₃), M=1671+2-8 MeV, $\Gamma=10+22-4$ MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}$ (D₀₃), M=1668.5±0.5 MeV, $\Gamma=1.5\pm0.5$ MeV
- The reason is the same
 - From K⁻p $\rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Especially the angular distribution ightarrow Model independent
- There is no state in quark models
 - It must be an exotic
 - $-udss\bar{s}$ pentaquark??

$\Lambda_c \rightarrow \Sigma \pi \pi$ decays at Belle

- Motivation: Measure the Σπ scattering lengths based on "Cabibbo's method", T. Hyodo and M. Oka, Phys. Rev. C84, 035201 (2011)
- This talk: Measure the $\mathcal{B}(\Sigma\pi\pi)$ relative to $pK^{-}\pi^{+}$ + int. resonances.

$$\Lambda_c \rightarrow \Sigma^+ \pi^- \pi^+ (4.57 \pm 0.29\%)^*$$

$$\Lambda_c \rightarrow \Sigma^0 \pi^+ \pi^0 (2.3 \pm 0.9\%)^*$$

$$\Lambda_c \rightarrow \Sigma^+ \pi^0 \pi^0 (\text{unknown})$$

Energy difference of $\Sigma \pi$ under final state charge exchange.

* C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016).

Errors are in order stat., sys. and $(\mathcal{B}(pK\pi))$. arXiv:1802.03421

Final state	$\mathcal{B}(\Sigma\pi\pi)/\mathcal{B}(pK\pi)$	$\mathcal{B}(\Sigma\pi\pi)$ [%]	$\mathcal{B}_{PDG}(\Sigma\pi\pi)$ [%]
$\Sigma^+\pi^-\pi^+$	$0.706 \pm 0.003 \pm 0.030$	$4.48 \pm 0.02 \pm 0.19 \pm 0.23$	4.57 ± 0.29
$\Sigma^0 \pi^+ \pi^0$	$0.491 \pm 0.005 \pm 0.023$	$3.12 \pm 0.03 \pm 0.15 \pm 0.16$	2.3 ± 0.9
$\Sigma^+ \pi^0 \pi^0$	$0.198 \pm 0.006 \pm 0.017$	$1.26 \pm 0.04 \pm 0.11 \pm 0.07$	-

Observation of Pc states at LHCb

LHCb: PRL115, 072001 (2015)

FIG. 1 (color online). Feynman diagrams for (a) $\Lambda_b^0 \to J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \to P_c^+ K^-$ decay.

21

• Analogue search for hidden-strange pentaquark by switching $b \to c(\Lambda_b^0 \to \Lambda_c^+), c \to s(J/\psi \to \phi): \Lambda_c^+ \to \pi^0 P_s^+ \to \pi^0(\phi p).$

Reference modes

- $\Lambda_c^+ \to \phi p \pi^0$ is Cabibbo-suppressed decay.
- $\Lambda_c^+ \to p K^- \pi^+$ is used for reference, and the Cabibbo-favored decay $\Lambda_c^+ \to K^- \pi^+ p \pi^0$ is measured.

- $\frac{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0)}{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p)} = (0.685 \pm 0.007 \pm 0.018)$
- Most precise measurement: $\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0) = (4.42 \pm 0.05 \pm 0.12 \pm 0.16)\%$
- Previous measurement from BESIII: $(4.53 \pm 0.23 \pm 0.30)\%$
- B. Pal et al., Phys.Rev.D96, 051102(R)(2017)

Search for Ps states at Belle

Phys.Rev.D96, 051102(R)(2017)

FIG. 1. Feynman diagram for the decay (a) $\Lambda_c^+ \to \phi p \pi^0$ and (b) $\Lambda_c^+ \to P_s^+ \pi^0$.

Perform 2D fit to $M_{K^+K^-\rho\pi^0}$ vs $M_{K^+K^-}$ plane. $\Sigma^+ \rightarrow p\pi^0$ vetoed

No significant Ps signal

• Best fit yields a peak at M=(2025 \pm 5) MeV/c² and Γ =(22 \pm 12) MeV

PRD96, 051102(R) (2017); 915fb⁻¹

Number of candidate $\Lambda_c \rightarrow P_s \pi^0 \rightarrow \phi p \pi^0$ events: 77.6±28.1 B($\Lambda_c \rightarrow P_s \pi^0$)xB($P_s \rightarrow \phi p$)<8.3x10⁻⁵ @90% C.L.

Hadronic decays of Ω_{C}

 Among 4 ground state charmed baryons, Ω_c(css) is not studied well as cross section is small.

- Only Ω_c has the same flavor light quarks (ss). Constructive interference is thought to be the origin of its short life time.
- Precise measurements will shed light on the dynamics of baryon weak decays.
- Belle performed measurements of 8 decay modes relative to the bench mark mode: $\Omega^{-}\pi^{+}$.
 - Most precisements: $\Omega^{-}\pi^{+}\pi^{0}$, $\Omega^{-}\pi^{+}\pi^{-}\pi^{+}$, $\Xi^{-}K^{-}\pi^{+}\pi^{+}$, and $\Xi^{0}K^{-}\pi^{+}$.
 - First measurements: $\Xi^- \bar{K}^0 \pi^+$, $\Xi^0 \bar{K}^0$ and $\Lambda \bar{K}^0 \bar{K}^0$.

$\Omega_{\rm c}$ branching fractions

PRD97,032001(2018)

- Precision improved by factor 2 for already measured modes.
- First measurements of intermediate resonances.
 - Dominant contributions.
- Three first observations.

Observation of excited Ωc states at LHCB

Orbitally excited Ω_c cannot decay to $\Omega^-\pi$ +, therefore $\Xi_c^+K^-$ is a good place to look.

Earlier this year, LHCb did exactly that:

Confirmation of excited Ωc states at Belle PRD97, 051102 (2018)

In $\Xi_c^+K^-$ mass spectrum, peaks at 3000, 3050, 3066 and 3090 MeV, 3119 MeV is not significant.

Four narrow states out of five reported from LHCb confirmed.

Confirmation of excited Ωc states at Belle

PRD97, 051102 (2018)

- The masses and intrinsic widths of all six are fixed to the values given by LHCb
- Strong confirmation of $\Omega_c^0(3066)$ and $\Omega_c^0(3090)$
- confirmation of $\Omega_c^0(3000)$ and $\Omega_c^0(3050)$
- No confirmation of Ω⁰_c(3119) (but no disagreement due to the small statistics)
- confirmation of wide excess at higher mass.

Ω_c Excited State	3000	3050	3066	3090	3119	3188
Yield	37.7 ± 11.0	28.2 ± 7.7	81.7 ± 13.9	86.6 ± 17.4	3.6 ± 6.9	135.2 ± 43.0
Significance	3.9σ	4.6σ	7.2σ	5.7σ	0.4σ	2.4σ
LHCb Mass	$3000.4 \pm 0.2 \pm 0.1$	$3050.2 \pm 0.1 \pm 0.1$	$3065.5 \pm 0.1 \pm 0.3$	$3090.2 \pm 0.3 \pm 0.5$	$3119 \pm 0.3 \pm 0.9$	$3188 \pm 5 \pm 13$
Belle Mass	$3000.7 \pm 1.0 \pm 0.2$	$3050.2 \pm 0.4 \pm 0.2$	$3064.9 \pm 0.6 \pm 0.2$	$3089.3 \pm 1.2 \pm 0.2$	-	$3199\pm9\pm4$
(with fixed Γ)						

Unit: MeV/c²

- Alternatively, the masses of the five signals are measured by fitting the same distribution without constraining the masses.
- In all cases, the results are consistent with the LHCb values.

$\Xi_c(2930)^0 \quad \text{in } B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

- Belle reported a structure, called X(4630), in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution in $e^+e^- \rightarrow \gamma_{ISR} \Lambda_c^+ \overline{\Lambda}_c^-$ PRL 101, 172001
- BarBar once studied $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ and found two small peaks in $M_{\Lambda_c^+ \overline{\Lambda_c^-}}$ spectrum and a vague structure named Ξ_c (2930) is seen in the distribution of $M_{K \Lambda_c}$. Larger data is needed to verify them. PRD 77, 031101
- Also, some theory explained that Y(4660) has a large partial decay width to $\Lambda_c^+ \overline{\Lambda_c^-}$ and it's isospin partner Y(4616) is predicted. PRD 82, 094008; PRL102, 242004

$\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

$$\begin{aligned} & \bigstar \\ \hline \mathbf{E}_{c}\left(2930\right) & & \bigstar \\ \hline \mathbf{CHARMED BARYONS} \\ (C=+1) \\ \Lambda_{c}^{+} = udc , \Sigma_{c}^{+} = udc , \Sigma_{c}^{0} = ddc , \Xi_{c}^{+} = usc , \Xi_{c}^{0} = dsc , \Omega_{c}^{0} = ssc \\ \overline{\mathbf{E}_{c}}\left(2930\right) & I(J^{P}) = ?(?^{?}) \\ \hline \mathbf{A} \text{ peak seen in the } \Lambda_{c}^{+}K^{-} \text{ mass projection of } B^{-} \rightarrow \Lambda_{c}^{+}\overline{\Lambda_{c}}K^{-} \text{ events.} \\ \overline{\mathbf{E}_{c}}(2930) \text{ MASS} & 2931 \pm 6 \text{ MeV} \\ \overline{\mathbf{E}_{c}}(2930) \text{ WIDTH} & 36 \pm 13 \text{ MeV} \end{aligned}$$

tion for experimental resolution, we obtain $m = 2931 \pm 3(\text{stat}) \pm 5(\text{syst}) \text{ MeV}/c^2$ and $\Gamma = 36 \pm 7(\text{stat}) \pm 11(\text{syst})$ MeV. We do not see any such structure in the m_{ES} sideband region. This description is in good agreement with the data (χ^2 probability of 22%) and could be interpreted as a single Ξ_c^0 resonance with those parameters, though a more complicated explanation (e.g. two narrow resonances in close proximity) cannot be excluded.

Observation of $\mathcal{Z}_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle

Eur. Phys. J. C78, 252 (2018)

Clear confirmation for the BaBar claim, PRD77,031101(2008) and much more precise M=2928.9 \pm 3.0 +0.8/-12.0 MeV, Γ =19.5 \pm 8.4 +5.4/-7.9 MeV

\(\mathbf{E}_c(2930)^0 = csd\) is the first charmed-strange baryon established in B decay.
 31

Search for Y(4660) and its spin part in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle

- No Y(4660) and its spin partner Y_{η} were observed. in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution
- 90% C.L. upper limits of $B^+ \to K^+ Y(4660) \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ and $B^+ \to K^+ Y_\eta \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ are 1.2×10^{-4} and 2.0×10^{-4} .

Evidence of charged $\Xi_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

BELLE

- Based on full $\Upsilon(4S)$ data set (772 M $B\overline{B}$ pairs) at Belle
- Three Λ_c decay channels:

 $\Lambda_c^+ \to pK^-\pi^+, \Lambda_c^+ \to pK_s(\pi^+\pi^-) \text{ and } \Lambda_c^+ \to \Lambda(p\pi^-)\pi^+.$

• B candidates extracted via 2D fit to M_{bc} and ΔM_B

• Quite clear $\Lambda_c^+ \bar{\Lambda}_c^-$ signals and B^0 signals.

- $N^{\rm sig} = 34.9 \pm 6.6$ with a statistical signal significance above 8.3σ
- $\mathcal{B}(\bar{B}^0 \to \bar{K}^0 \Lambda_c^+ \bar{\Lambda}_c^-) = [3.99 \pm 0.76 (\text{stat.}) \pm 0.51 (\text{syst.})] \times 10^{-4}$

Evidence of charged $\mathcal{Z}_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

• Charged $\mathcal{Z}_{c}(2930)$ extracted by fitting $M_{K_{s}^{0}\Lambda_{c}}$

- $N_{\Xi_c^{\pm}} = 21.2 \pm 4.6$, stat. significance 4.1σ
- $M_{\Xi_c^{\pm}(2930)} = 2942.3 \pm 4.4 \pm 1.5 \text{ MeV}/c^2$
- $\Gamma_{\Xi_c^{\pm}(2930)} = 14.8 \pm 8.8 \pm 2.5 \,\mathrm{MeV}$

BELL

Measurements of absolute Brs of Ξ_c^0

- Weak decays of charmed hadrons play an unique role in the study of strong interaction; the charmed-baryon sector also offers an unique and excellent laboratory for testing heavy-quark symmetry and lightquark chiral symmetry.
- For the charmed baryons of the SU(3) anti-triplet, only Λ_c absolute Brs were measured by Belle [PRL113,042002(2014), first time] and BESIII [PRL116,052001(2016)]
- Since E⁰_c [PRL62,863(1989)] and E⁺_c [PLB122,455 (1983)] were discovered ~30 years ago, no absolute Brs could be measured.
- For Ξ_c^0 , the Brs are all measured with ratios to the $\Xi^-\pi^+$, the so called reference mode.

udc

Measurements of absolute Brs of Ξ_c^0

- Theory: $B(\Xi_c^0 \to \Xi^- \pi^+)^{\sim} 1.3\%$ [PRD48, 4188 (1993)], (2.24±0.34)% [JHEP03, 66(2018)].
- The $B(\Xi_c^0 \to \Lambda K^- \pi^+) / B(\Xi_c^0 \to \Xi^- \pi^+) = 1.07 \pm 0.12 \pm 0.07$ and
- $B(\Xi_{\rm c}^0 \to p {\rm K}^- {\rm K}^- \pi^+) / B(\Xi_{\rm c}^0 \to \Xi^- \pi^+) = 0.33 \pm 0.03 \pm 0.03 [\text{PLB 605,237}]$
- $\Xi_c^0 \rightarrow p K^- K^- \pi^+$ plays a fundamental role in lots of bottom baryons study at LHCb .
- How to measure E⁰_c absolute Brs ? Model Independent !

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)},$$
$$\mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}.$$
$$(\Xi_c^0 \to p K^- K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}$$

 \mathcal{B}

- For inclusive $B^- \to \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \to anything$, never measured before.
- For exclusive $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+); B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda K^- \pi^+)$, measured by Belle and BaBar with large errors.

Measurements of Br of $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \rightarrow$ anything

- The $\overline{\Lambda_c}$ reconstructed via its $\overline{p}K^+\pi^-$ and $\overline{p}K_s^0$ decays $\frac{arXiv:1811.09738}{arXiv:1811.09738}$
- A tagged B meson candidate, B_{tag}^+ , is reconstructed using a neural network based on the full hadron-reconstruction algorithm

- An unbinned maximum likelihood fit: $N(\Xi_c^0)=40.9 \pm 9.0, 5.5\sigma(stat.)$
- $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0, \Xi_c^0 \rightarrow anything) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$ for the first time

Measurements of absolute Brs of Ξ_c^0

Summary of the measured branching fractions and the ratios of Ξ_c^0 decays

Channel	Br/Ratio	
$B(\boldsymbol{B}^- \to \overline{\boldsymbol{\Lambda}}_{\boldsymbol{c}}^- \boldsymbol{\Xi}_{\mathrm{c}}^0)$	(9.51±2.10±0.88)×10 ⁻⁴	
$B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \rightarrow \Xi^- \pi^+)$	(1.71±0.28±0.15)×10 ⁻⁵	(2.4±0.9)×10 ⁻⁵
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	(1.11±0.26±0.10)×10⁻⁵	(2.1±0.9)×10 ⁻⁵
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) B(\Xi_c^0 \to \mathrm{pK}^- \mathrm{K}^- \pi^+)$	(5.47±1.78±0.57)×10 ⁻⁶	Ť
$B(\Xi_{\rm c}^0 \rightarrow \Xi^- \pi^+)$	$(1.80\pm0.50\pm0.14)\%$	
$B(\Xi_{\rm c}^0 \rightarrow \Lambda {\rm K}^- \pi^+)$	(1.17±0.37±0.09)%	PDG
$B(\Xi_c^0 \rightarrow pK^-K^-\pi^+)$	(0.58±0.23±0.05)%	*
$B(\Xi_{\rm c}^0\to\Lambda {\rm K}^-\pi^+)/B(\Xi_{\rm c}^0\to\Xi^-\pi^+)$	$0.65 \pm 0.18 \pm 0.04$	1.07 ± 0.14
$B(\Xi_{\rm c}^0 \rightarrow \mathrm{pK^-K^-\pi^+})/B(\Xi_{\rm c}^0 \rightarrow \Xi^-\pi^+)$	$0.32 \pm 0.12 \pm 0.07$	0.34 ± 0.04

- We have performed an analysis of $B^- o \overline{\Lambda}_c^- \Xi_c^0$ inclusively and exclusively
- First model-independent measurement of absolute Brs of Ξ_c^0 decays
- The branching fraction $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The measured $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays. 39

SuperKEKB

Calendar Year

Year

SuperKEKB and Belle II Schedule

- Phase1, Feb.-June, 2016
 - Accelerator commissioning, no collision
- Phase2, Feb.-July 17, 2018
 - Collision w/o vertex detectors
 - Understand background and detector performance
 - Instantaneous luminosity reach ~0.5x10³⁴ cm⁻²s⁻¹
 - ~0.5 fb⁻¹ data at the Y(4S) resonance was collected

SuperKEKB operation status

42

Belle II Performance

Clear charm signals e+e- → ccbar Belle II detector is working well!

Belle II Performance

We are seeing B signals!

Belle II in future

NOW Phase 3

Phase 3

- Installation of VXD
- Start physics run with full detectors in Spring 2019
- Operate 9 months per year

Status of Belle II Physics Book

- Belle II physics book (>630 pages), to be printed by PTEP very soon https://confluence.desy.de/display/BI/B2TiP+ReportStatus
- The contents include Belle II detector, simulation, reconstruction. analysis software, B decays, CKM angles, charm, quarkonium(-like), τ, new physics,
- Some golden channels are given with Belle II MC simulations, theoretical discussions, sensitivity and systematic estimates
 1 ab⁻¹

arXiv:1808.10567

MC signal and background estimates for $au o \gamma \mu$

Mode	Eff.(%)	$N_{BG}^{ m exp}$	UL (10^{-8})
$\mu\eta(\rightarrow\gamma\gamma)$	8.2	0.63 ± 0.37	3.6
$e\eta(\rightarrow\gamma\gamma)$	7.0	0.66 ± 0.38	8.2
$\mu\eta(\to\pi\pi\pi^0)$	6.9	0.23 ± 0.23	8.6
$e\eta(\rightarrow\pi\pi\pi^0)$	6.3	0.69 ± 0.40	8.1
$\mu\eta(\text{comb.})$			2.3
$e\eta(\text{comb.})$			4.4
$\mu\eta'(\to\pi\pi\eta)$	8.1	$0.00^{+0.16}_{-0.00}$	10.0
$e\eta'(\rightarrow\pi\pi\eta)$	7.3	0.63 ± 0.45	9.4
$\mu\eta'(\to\gamma\rho^0)$	6.2	0.59 ± 0.41	6.6
$e\eta'(\to\gamma\rho^0)$	7.5	0.29 ± 0.29	6.8
$\mu\eta'(\text{comb.})$			3.8
$e\eta'(\text{comb.})$			3.6
$\mu\pi^0$	4.2	0.64 ± 0.32	2.7
$e\pi^0$	4.7	0.89 ± 0.40	2.2

Belle II possibilities

- Many things, but some of them can be done in Belle, too
 - We have not used the full potential of Belle data
- Examples include:
 - Search for more ${\rm Y_c}$ resonances in unsearched modes; e.g., $\Lambda_c\eta$
 - J^P measurements for Λ_c*, Ξ_c*, Ω_c* ...; Partial wave analysis.
 → We can determine J^P of most of presently known states
 → Comprehensive list of charmed baryons
 - Search for $\Xi*$ and $\Omega*$ resonances in the decay of $\Lambda_{\rm c}$ and $\Xi_{\rm c}.$
 - Weak decay branches and decay asymmetry parameters
 - Exotic search: pentaquarks, dibaryons, ... e.g., ND, $N\overline{D}$ (or Θ_c), H, H_c, $\Lambda_c N$, ...
 -

→ Belle II yield in 50 ab⁻¹: 2.8 x 10⁶ inclusive

Unique sample:

- allows measurement of Λ_c absolute branching fractions
- allows measurement of semileptonic Λ_c decays
- allows searches for Λ_c rare decays with missing energy

Belle II Collaboration

~800 Colleagues~100 Institutions25 Countries/regions

Summary

- Belle data taking is over, but still actively publishing results. Many interesting results are from (charmed)baryon spectroscopy.
 - --Observation of an excited Ω^- baryon: $\Omega^*(2012)$
 - -- First observation of doubly Cabibbo-suppressed decay in $\Lambda_c^+ \rightarrow p \ K^+ \pi^-$
 - -- Measurements of $\Lambda_c \to \Sigma \pi \pi$
 - -- Ω_c and excited Ω_c studies
 - -- First observation of $\mathcal{Z}_c^0(2930)$ and evidence of $\mathcal{Z}_c^{+-}(2930)$ in B decays
 - -- Search for Ps in $\Lambda_c^+ \to p\phi\pi^0$ decay
 - -- Measurements of absolute Brs of \mathcal{Z}_c^0
- Interesting results are expected at Belle II, where 50 times more statistics than Belle.
 - --Spin-parity determination of most (charmed)baryons and hyperons.
 - --Search for new (charmed)baryon/hyperon resonances
 - -- And more ...

