Novel Feynman Integral Reduction Method and its Application

Yan－Qing Ma
Peking University
yqma＠pku．edu．cn

Based on：1711．09572，1801．10523
and work in preparation
2018年高圈计算研讨会 2018／12／30，Peking University

Outline

I. Introduction

II. A New Representation
III. Reduction
IV. Summary and outlook

Quantum field theory

$>$ QFT: the underlying theory of modern physics

- Solving QFT is important for testing the SM and discovering NP

$>$ How to solve QFT:

- Nonperturbatively (e.g. lattice field theory): discretize spacetime, numerical simulation complicated, application limited

- Perturbatively (small coupling constant): generate and calculate Feynman amplitudes, relatively simpler, the primary method

Super computer

Perturbative QFT

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules
- New developments: unitarity, recurrence relation

2. Calculate Feynman loop integrals

3. Calculate phase-space integrals

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals

$$
\int \frac{d^{D} p}{(2 \pi)^{D}}(2 \pi) \delta_{+}\left(p^{2}\right)=\lim _{\eta \rightarrow 0^{+}} \int \frac{d^{D} p}{(2 \pi)^{D}}\left(\frac{i}{p^{2}+i \eta}+\frac{-i}{p^{2}-i \eta}\right)
$$

Feynman loop integrals

$>$ The key to apply pQFT

$$
\lim _{\eta \rightarrow 0^{+}} \int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \prod_{\alpha=1}^{N} \frac{1}{\left(q_{\alpha}^{2}-m_{\alpha}^{2}+\mathrm{i} \eta\right)^{\nu_{\alpha}}}
$$

q_{α} : linear combination of loop momenta and external momenta

Multi-loop: a challenge for intelligence

$>$ One-loop calculation: (up to 4 legs) satisfactory

 approaches existed as early as 1970s't Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

Developments of unitarity-based method in the past decade made the calculation efficient for multi-leg problems

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237
$>$ About 40 years later, a satisfactory method for multi-loop calculation is still missing

Main strategy

1) Reduce loop integrals to basis (Master Integrals)

- Integration-by-parts (IBP) reduction: Chetyrkin, Tkachov, NPB (1981) the only way (before our method), main bottleneck extremely time consuming for multi-scale problems unitarity-based reduction is efficient but cannot give complete reduction

2) Calculate MIs/original integrals

- Differential equations (depends on reduction and BCs) Kotikov, PLB (1991)
- Difference equations (depends on reduction and BCs) Laporta, 0102033
- Sector decomposition (extremely time-consuming) Binoth, Heinrich, 0004013
- Mellin-Barnes representation (nonplanar, time) Usyukina(1975)

Smirnov, 9905323

IBP redution

$>$ A result of dimensional regularization

Chetyrkin, Tkachov, NPB (1981)
$\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\partial}{\partial \ell_{j}^{\mu}}\left(v_{k}^{\mu} \prod_{\alpha=1}^{N} \frac{1}{\left(q_{\alpha}^{2}-m_{\alpha}^{2}+\mathrm{i} \eta\right)^{\nu_{\alpha}}}\right)=0, \quad \forall j, k$

- Linear equations:

$$
\sum_{i=1} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- M_{i} scalar integrals, Q_{i} polynomials in D, \vec{s}, η
$>$ For each problem, the number of MIs is FINITE
- Feynman integrals form a finite dimensional linear space
- Reduce thousands of loop integrals to much less MIs

Difficulty of IBP reduction

$>$ Solve IBP equations

$$
\sum_{i=1} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- Very large scale of linear equations (even millions of)
- Fully coupled
- Hard to do Gaussian elimination for many variables D, \vec{s}, η
- Too slow if solve it numerically for each phase space point

$>$ Cutting-edge problems

- Hundreds GB RAM
- Months of runtime using super computer

Difficulty of MIs calculation

$>$ Analytical: Higgs $\rightarrow 3$ partons (Euclidean Region)

R. Bonciani, et.al 2016

200MB, 10 min
$>$ Numerical: Quarkonium decay at NNLO

NNLO (Virtual Squared)

NNLO (Virtual-Real)

Feng, Jia, Sang, 1707.05758
$10^{5} \mathrm{CPU}$ core-hour

Recent developments

$>$ Improvements for IBP reduction

- Finite field method Manteuffel, Schabinger, 1406.4513
- Direct solution Kosower,1804.00131
- Module-intersection IBP method Böhm, Georgoudis, Larsen, Schönemann, Zhang, 1805.01873
- Obtain one coefficient at each step Chawdhry, Lim, Mitov, 1805.09182

> Improvements for evaluating scalar integrals

- Quasi-Monte Carlo method Li, Wang, Yan, Zhao, 1508.02512
- Finite basis Manteuffel, Panzer, Schabinger, 1510.06758
- Uniform-transcendental basis Boels, Huber, Yang, 1705.03444

State-of-the-art computation

$>2 \rightarrow 2$ process with massive particles at twoloop order is already the frontier

- $g+g \rightarrow t+\bar{t}, g+g \rightarrow H+H, g+g \rightarrow H+g, \ldots$

$>$ Very time-consuming

- Two-loop $g+g \rightarrow H+H(g)$: complete IBP reduction cannot be achieved within tolerable time

Borowka et. al., 1604.06447
Jones, Kerner, Luisoni, 1802.00349

- Two-loop decay $Q+\bar{Q} \rightarrow g+g$, MIs cost $O\left(10^{5}\right)$ CPU core-hour Feng, Jia, Sang, 1707.05758
- Four-loop nonplanar cusp anomalous dimension, within tolerable computational expense, calculated MIs have 10\% uncertainty

Boels, Huber, Yang, 1705.03444

New ideas are badly needed

Outline

I. Introduction

II. A New Representation

III. Reduction
IV. Summary and outlook

Introduction of auxiliary variable

> Dimensionally regularized Feynman loop integral with an auxiliary variable η

$$
\mathcal{M}(D, \vec{s}, \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \prod_{\alpha=1}^{N} \frac{1}{\left(\mathcal{D}_{\alpha}+\mathrm{i} \eta\right)^{\nu_{\alpha}}} \quad \mathcal{D}_{\alpha} \equiv q_{\alpha}^{2}-m_{\alpha}^{2}
$$

- Think it as an analytical function of η
- Physical result is defined by

$$
\mathcal{M}(D, \vec{s}, 0) \equiv \lim _{\eta \rightarrow 0^{+}} \mathcal{M}(D, \vec{s}, \eta)
$$

Expansion at infinity

$>$ Expansion of propagators around $\eta=\infty$

$$
\frac{1}{\left[(\ell+p)^{2}-m^{2}+\mathrm{i} \eta\right]^{\nu}}=\frac{1}{\left(\ell^{2}+\mathrm{i} \eta\right)^{\nu}} \sum_{n=0}^{\infty} \frac{(\nu)_{n}}{n!}\left(\frac{-2 \ell \cdot p-p^{2}+m^{2}}{\ell^{2}+\mathrm{i} \eta}\right)^{n}
$$

- Only one region: $l^{\mu} \sim|\eta|^{1 / 2}$
- No external momenta in denominator, vacuum integrals
- Simple enough to deal with

$>$ Vacuum Mls with equal internal masses

Broadhurst, 9803091

- Analytical results are known up to 3-loop

Kniehl, Pikelner, Veretin, 1705.05136
Schroder, Vuorinen, 0503209

- Numerical results are known up to 5-loop

A new representation

$>$ Asymptotic expansion

$$
\begin{aligned}
\mathcal{M}(D, \vec{s}, \eta) & =\eta^{L D / 2-\sum_{\alpha} \nu_{\alpha}} \sum_{\mu_{0}=0}^{\infty} \eta^{-\mu_{0}} \mathcal{M}_{\mu_{0}}^{\mathrm{bub}}(D, \vec{s}) \\
\mathcal{M}_{\mu_{0}}^{\mathrm{bub}}(D, \vec{s}) & =\sum_{k=1}^{B_{L}} I_{L, k}^{\mathrm{bub}}(D) \sum_{\vec{\mu} \in \Omega_{\mu_{0}}^{r}} C_{k}^{\mu_{0} \ldots \mu_{r}}(D) s_{1}^{\mu_{1}} \cdots s_{r}^{\mu_{r}}
\end{aligned}
$$

- $I_{L, k}^{\text {bub }}(D)$: k-th master vacuum integral at L-loop order
- $C_{k}^{\mu_{0} \ldots \mu_{r}}(D)$: rational functions of D
- Physical Feynman integral can be obtained by analytical continuation of this calculable asymptotic series: a new representation

Example

$>$ Sunrise integral

$$
\begin{gathered}
\hat{I}_{\nu_{1} \nu_{2} \nu_{3}} \equiv \int \prod_{i=1}^{2} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{1}{\mathcal{D}_{1}^{\nu_{1}} \mathcal{D}_{2}^{\nu_{2}} \mathcal{D}_{3}^{\nu_{3}}} \\
\mathcal{D}_{1}=\left(\ell_{1}+p\right)^{2}-m^{2}, \mathcal{D}_{2}=\ell_{2}^{2}, \mathcal{D}_{3}=\left(\ell_{1}+\ell_{2}\right)^{2} \\
I_{111}=\eta^{D-3}\left\{\left[1-\frac{D-3}{3} \frac{m^{2}}{\mathrm{i} \eta}+\frac{(D+4)(D-3)}{9 D} \frac{p^{2}}{\mathrm{i} \eta}\right] I_{2,2}^{\text {bub }}\right. \\
\\
\left.-\mathrm{i}\left[\frac{(D-2)^{2}}{3 D} \frac{p^{2}}{\mathrm{i} \eta}\right] I_{2,1}^{\text {bub }}+\mathcal{O}\left(\eta^{-2}\right)\right\}
\end{gathered}
$$

Analytical continuation

$>$ Reduce all loop integrals to MIs

- IBP is hopeless in general, see next section for new reduction

> Set up and solve DEs of MIs

$$
\frac{\partial}{\partial \eta} \vec{I}(D ; \eta)=A(D ; \eta) \vec{I}(D ; \eta) \quad \text { with known } \vec{I}(D ; \infty)
$$

Example

$>$ 2-loop non-planar sector for $\mathrm{Q}+\overline{\mathrm{Q}} \rightarrow g+g$

- 168 master integrals
- Traditional method sector decomposition: $O\left(10^{4}\right)$ CPU core-hour
- Our method: a few minutes
$>$ Faster by 10^{5} times!!
$>$ But depends on the existence of efficient reduction method

Outline

I. Introduction
II. A New Representation

III. Reduction

IV. Summary and outlook

What is reduction

> Reduction

- Find relations between loop integrals
- Use them to express all loop integrals as linear combinations of MIs
$>$ Relations among $G \equiv\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$

$$
\sum_{i=1}^{n} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- $Q_{i}(D, \vec{s}, \eta)$: homogeneous polynomials of \vec{s}, η of degree d_{i}
$>$ Constraints from mass dimension

$$
2 d_{1}+\operatorname{Dim}\left(\mathcal{M}_{1}\right)=\cdots=2 d_{n}+\operatorname{Dim}\left(\mathcal{M}_{n}\right)
$$

- Only 1 degree of freedom in $\left\{d_{i}\right\}$, chosen as $d_{\text {max }} \equiv \operatorname{Max}\left\{d_{i}\right\}$

Determine relations

$>$ Decomposition of $Q_{i}(D, \vec{s}, \eta)$

$$
\begin{aligned}
& Q_{i}(D, \vec{s}, \eta)=\sum_{\left(\lambda_{0}, \vec{\lambda}\right) \in \Omega_{d_{i}}^{+1}} Q_{i}^{\lambda_{0} \ldots \lambda_{r}}(D) \eta^{\lambda_{0}} s_{1}^{\lambda_{1}} \cdots s_{r}^{\lambda_{r}} \\
\Rightarrow & \sum_{k, \rho_{0}, \vec{\rho}} f_{k}^{\rho_{0} \ldots \rho_{r}} I_{L, k}^{\mathrm{bub}}(D) \eta^{\rho_{0}} s_{1}^{\rho_{1}} \cdots s_{r}^{\rho_{r}}=0
\end{aligned}
$$

$>$ Linear equations: $\quad f_{k}^{\rho_{0} \rho_{1} \ldots \rho_{r}}(Q)=0$

- With enough constraints $\Rightarrow Q_{i}^{\lambda_{0} \ldots \lambda_{r}}(D)$
- With finite field technique, only integers in a finite field are involved, equations can be efficiently solved
$>$ Relations among $G \equiv\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ with a fixed $d_{\text {max }}$ are fully determined

Reduction

$>$ With $G=G_{1} \cup G_{2}$, assume

- G_{1} is more complicated than G_{2}
- G_{1} can be reduced to G_{2}
> Algorithm Search for simplest relations

1. Set $d_{\text {max }}=0$
2. Find out all reduction relations with fixed $d_{\text {max }}$
3. If obtained relations are enough to determine G_{1}, stop; else $d_{\max }++$ and go to step 2
$>$ Question: how to choose G_{1} and G_{2} ?
4. Relations among G_{1} and G_{2} are not too complicated: relations easy to find
5. Size of G_{1} is not too large: relations can be efficiently used numerically

Scalar reduction

$>$ Scalar integral: $\vec{v}=\left(v_{1}, \ldots, v_{N}\right), v_{i} \geq 0$

- $\mathbf{0}^{ \pm} \equiv$ Identity, $\mathbf{m}^{ \pm} \equiv(\mathrm{m}-1)^{ \pm} \mathbf{1}^{ \pm}$
- $\mathbf{1}^{+}(5,1,0,3)=\{(6,1,0,3),(5,2,0,3),(5,1,0,4)\}$
- $\mathbf{1}^{-}(5,1,0,3)=\{(4,1,0,3),(5,0,0,3),(5,1,0,2)\}$
-1-loop: $G_{1}=1^{+} \vec{v}, G_{2}=1^{-} 1^{+} \vec{v}$
$>$ Multi-loop:

$$
G_{1}=\mathbf{m}^{+} \vec{v}, G_{2}=\left\{\mathbf{1}^{-} \mathbf{m}^{+}, \mathbf{1}^{-}(\mathbf{m}-\mathbf{1})^{+}, \ldots, \mathbf{1}^{-} \mathbf{1}^{+}\right\} \vec{v}
$$

- The size of G_{1} is not too large, about dozens of integrals
- Relations among G_{1} and G_{2} are not too complicated, see examples

A step-by-step reduction is realized!

Examples

$>$ 2-loop $g+g \rightarrow H+H$ and $g+g \rightarrow g+g+g$

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)

$g+g \rightarrow H+H$				$g+g \rightarrow g+g+g$			
Sector	Type	$d_{\max }$	\mathbf{m}^{+}	Sector	Type	$d_{\max }$	\mathbf{m}^{+}
$1(\mathrm{a})$	$7-\mathrm{NP}$	1	$\mathbf{3}^{+}$	$2(\mathrm{a})$	$8-\mathrm{NP}$	1	$\mathbf{3}^{+}$
$1(\mathrm{~b})$	$7-\mathrm{P}$	1	$\mathbf{3}^{+}$	$2(\mathrm{~b})$	$8-\mathrm{NP}$	3	$\mathbf{3}^{+}$
$1(\mathrm{c})$	$6-\mathrm{NP}$	5	$\mathbf{3}^{+}$	$2(\mathrm{c})$	$7-\mathrm{NP}$	4	$\mathbf{3}^{+}$
$1(\mathrm{~d})$	$6-\mathrm{P}$	4	$\mathbf{2}^{+}$	$2(\mathrm{~d})$	$6-\mathrm{NP}$	2	$\mathbf{3}^{+}$

Difficulty:

- More legs $>$ less legs
- Nonplanar > Planar
- $\mathbf{m}^{+} \vec{e}>\mathbf{m}^{+} \vec{v}$
- The reduction is obtained by a single-core laptop

Tensor reduction (preliminary)

$>$ Rank- R tensor integral

$$
\mathcal{M}^{\mu_{1} \cdots \mu_{R}} \equiv \int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\ell_{i_{1}}^{\mu_{1}} \cdots \ell_{i_{R}}^{\mu_{R}}}{\left.\mathcal{D}_{1}+\mathrm{i} \eta\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{N}+\mathrm{i} \eta\right)^{\nu_{N}}}
$$

$>$ Tensor decomposition

$$
\begin{gathered}
\mathcal{M}^{\mu_{1} \cdots \mu_{R}}=\sum_{i} A_{i}(D, \vec{s}, \eta) \times T_{i}^{\mu_{1} \cdots \mu_{R}}(g, p) \\
\Downarrow \\
A_{i}=\sum_{j}(T \cdot T)_{i j}^{-1} T_{j} \cdot \mathcal{M}, \quad \vec{A}=K \vec{I}+\vec{J}
\end{gathered}
$$

- $\vec{I}:$ rank- R integrals, containing irreducible scalar products (ISP)
- \vec{J} : integrals in sub-sectors or with lower rank
- \vec{A} can't be directly reduced to scalar integrals, different from 1-loop

Tensor reduction (preliminary)

> Goal: to find nontrivial relations among \vec{A} together with trivial relations $\vec{A}=K \vec{I}+\vec{J}$, to reduce \vec{A} to simper integrals

- \vec{A} in general has lower mass dimension than \vec{I}
- Possibility for simpler relations
$>$ Example: rank-2 tensors

$$
\left.\begin{array}{rl}
G_{1}= & \left\{\mathbf{1}^{+}, \mathbf{0}^{+}\right\} \vec{e} \otimes\left\{\ell_{1}^{\mu_{1}} \ell_{1}^{\mu_{2}}, \ell_{1}^{\mu_{1}} \ell_{2}^{\mu_{2}}, \ell_{2}^{\mu_{1}} \ell_{2}^{\mu_{2}}\right\} \\
G_{2}= & \mathbf{1}^{+} \mathbf{1}^{-} \vec{e} \otimes\left\{\ell_{1}^{\mu_{1}} \ell_{1}^{\mu_{2}}, \ell_{1}^{\mu_{1}} \ell_{2}^{\mu_{2}}, \ell_{2}^{\mu_{1}} \ell_{2}^{\mu_{2}}\right\} \\
& \cup\left\{\mathbf{1}^{+}, \mathbf{1}^{-} \mathbf{1}^{+}\right\} \vec{e} \otimes\left\{\ell_{1}^{\mu}, \ell_{2}^{\mu}\right\}
\end{array}\right\} \begin{aligned}
& d_{\max }=2
\end{aligned}
$$

Comparison with IBP reduction

$>$ IBP relations can be obtained very fast, but it is a problem how to use them

- Analytical: almost impossible for multi-scale problem
- Numerical: very time consuming because the relations are fully coupled, each phase space point may need hours to days

$>$ Our reduction strategy

- Needs time to obtain relations, but 1) relations are analytical that can be used for any phase space point; 2) according to cutting-edge examples, the time is tolerable
- Use our relations numerically: very efficient because relations are decoupled to small blocks, similar to one-loop case

Outline

I. Introduction
II. A New Representation
III. Reduction
IV. Summary and outlook

Summary

$>$ Find a new representation for Feynman integrals, conceptually translates the loop calculation to the problem of performing analytical continuations
$>$ Propose a new reduction strategy, which may overcome difficulties encountered in IBP reduction
$>$ Two-loop example $g g \rightarrow \mathrm{HH}, \mathrm{gg} \rightarrow$ ggg: correctness and efficiency of our reduction method

