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» QFT: the underlying theory of modern physics

« Solving QFT is important for testing the SM and discovering NP

> How to solve QFT:  ,

 Nonperturbatively (e.g. lattice field théd"ry): -
discretize spacetime, numerical simulation

complicated, application limited

] o -

* Perturbatively (small coupling constant):

generate and calculate Feynman amplitudes,

relatively simpler, the primary method - Super computer
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Perturbative QF T

1. Generate Feynman amplitudes

Feynman diagrams and Feynman rules

New developments: unitarity, recurrence relation

2. Calculate Feynman loop integrals J

3 Calculate phase-space integrals

Monte Carlo simulation with IR subtractions

Relating to loop integrals

/dD (27)64 (p?) = i / -
(2m)P " +(p oot | (27 2+m p? —in
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lim / . _
n—0+ H ”TD/Q " (q2 — m2 + 17})”“

X

q.: linear combination of loop momenta and external momenta
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%y Multi-loop: a challenge for intelligence

» One-loop calculation: (up to 4 legs) satisfactory
approaches existed as early as 1970s

’t Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

Developments of unitarity-based method in the past decade made the

calculation efficient for multi-leg problems

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237

» About 40 years later, a satisfactory method
for multi-loop calculation is still missing
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Main strategy

1) Reduce loop integrals to basis (Master Integrals )

* Integration-by-parts (IBP) reduction: Chetyrkin, Tkachov, NPB (1981)
Laporta, 0102033
the only way (before our method), main bottleneck
extremely time consuming for multi-scale problems

unitarity-based reduction is efficient but cannot give complete reduction

2) Calculate Mlis/original integrals

« Differential equations (depends on reduction and BCs) Kotikov, PLB (1991)
- Difference equations (depends on reduction and BCs) Laporta, 0102033
« Sector decomposition (extremely time-consuming) Binoth, Heinrich, 0004013

 Mellin-Barnes representation (nonplanar, time) ‘S’;{;‘:;Tlaé;g;g)%
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IBP redution

> A result of dimensional regularization

Chetyrkin, Tkachov, NPB (1981)

/HdDg'a vN —0, Vjk
imD/2 ot (qg—mQ—l—ln) -

a=1
|
Linear equations: Z QZ(D, g, 77) M@(D, §, 77) =0
1=1

M; scalar integrals, Q; polynomials in D, s,n

» For each problem, the number of Mis is FINITE

: . . . . . Smirnov, Petukhov, 1004.4199
Feynman integrals form a finite dimensional linear space

Reduce thousands of loop integrals to much less Mls
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Difficulty of IBP reduction

» Solve IBP equations
Y Qi(D,5,n) My(D,5,1) =0
i=1

Very large scale of linear equations (even millions of)

Fully coupled
Hard to do Gaussian elimination for many variables D, s,n

Too slow if solve it numerically for each phase space point

» Cutting-edge problems

Hundreds GB RAM

Months of runtime using super computer

9/31



Difficulty of MIs calculation

» Analytical: Higgs — 3 partons (Euclidean Region)

L

L1

> Numerical:

T

i

va

lla-lll

—_—

NNLO (Virtual Squared)

0 a4

R. Bonciani, et.al 2016

Bl

200MB, 10 min

S I

NNLO (Double Virtual) NNLO (Virtual—Real) NNLO (Double Real )

dl

Quarkonium decay at NNLO

Feng, Jia, Sang,1707.05758

10> CPU core-hour
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Recent developments

» Improvements for IBP reduction

Finite field method Manteuffel, Schabinger, 1406.4513
Direct solution Kosower, 1804.00131
Module-intersection IBP method Bshm, Georgoudis, Larsen, Schénemann, Zhang, 1805.01873

Obtain one coefficient at each step chawdhry, Lim, Mitov, 1805.09182

» Improvements for evaluating scalar integrals

Quasi-Monte Carlo method Li, wang, Yan, Zhao, 1508.02512

Finite basis Manteuffel, Panzer, Schabinger, 1510.06758

Uniform-transcendental basis Boels, Huber, Yang, 1705.03444
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State-of-the-art computation

» 2—2 process with massive particles at two-
loop order is already the frontier

g+g-t+t, g+g-H+H g+g-H+g,..

» Very time-consuming

Two-loop g + g = H+ H (g): complete IBP reduction cannot be achieved

Borowka et. al., 1604.06447
Jones, Kerner, Luisoni, 1802.00349

Two-loop deca + 0 + g, Mls cost 0(10°) CPU core-hour
P y Q Q 39 Y ( ) Feng, Jia, Sang,1707.05758

Four-loop nonplanar cusp anomalous dimension, within tolerable

within tolerable time

computational expense, calculated Mls have 10% uncertainty
Boels, Huber, Yang, 1705.03444

New ideas are badly needed
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Introduction of auxiliary variable

» Dimensionally regularized Feynman loop
integral with an auxiliary variable n

aPe, & 1

M50 = [ Hmw (D +inye Do = 0=

1=1 a=1

Think it as an analytical function of 7

Physical result is defined by

M(D,s,0)= lim M(D,5,n)

n—0+
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Expansion at infinity

» Expansion of propagators around n = oo

0.}

1 _ 1 3 (¥)n (—2€-p—p2+m2)n
(6 +p)? —m?+in]r (£ +in)¥ &= n 02 +in

n=

«  Only one region: [* ~ |n|/?
* No external momenta in denominator, vacuum integrals

« Simple enough to deal with

» Vacuum Mlis with equal internal masses

ALY

Davydychev,Tausk, NPB(1993)
Broadhurst, 9803091

* Analytical results are known up to 3-loop Kniehl, Pikelner, Veretin, 1705.05136

. Schroder, Vuorinen, 0503209
* Numerical results are known up to 5-100p Luthe, PhD thesis (2015)
Luthe, Maier, Marquard, Ychroder, 1701.07068
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A new representation

» Asymptotic expansion

M(D, 5’? ?7) — nLD/Q—Za Ve Z n—ﬁLOMbub( —»)

110

po=0
bUb bub Q- oy 751 [y
M2 (D E Iy E C (D)sy*t---sth
penr

«  IP%°(D): k-th master vacuum integral at L-loop order

»  C;°"*(D): rational functions of D

 Physical Feynman integral can be obtained by analytical continuation

of this calculable asymptotic series: a new representation
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Example

» Sunrise integral

m
dP¢, 1 e

1/11/21/3 — /H 17TD/2 DV1DV2DV3

D4 :(61 —I—p) — m? DQ—EQ, Dg—(fl +€2

. D—3m? (D+4 :
L =" 3{[1_ 3 ip +( 9)1() Ibb/\

_i|:(D_2)2p2]Ibub_|_O( }

3D 1?7 \j
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Analytical continuation

» Reduce all loop integrals to Mis

« |BP is hopeless in general, see next section for new reduction

» Set up and solve DEs of Mls

a = — -
an (D;n) = A(D;n)I(D;n) with known I[(D; )

Im(n) Well-studied mathematic problem:
\ Step1: Asymptotic expansion at n = o«
Step2: Taylor expansion at analytical points
Step3: Asymptotic expansionatn =0

X *
¥ I'=Nmin
—e—o———% — Re(n)
Mast /M3 M2 | M 2 Mmax

" Singularity structure
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+.‘- '_.....}...

168 master integrals
Traditional method sector decomposition: 0(10*) CPU core-hour

Our method: a few minutes

» Faster by 10° times!!
» But depends on the existence of efficient
reduction method
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Whatis reduction

» Reduction

Find relations between loop integrals

Use them to express all loop integrals as linear combinations of Mls

» Relations among G = {M,,M,, ...,M,,}
Y Qi(D,3,n) My(D,5,1) =0

1=1
Q;(D, s,n): homogeneous polynomials of s,n of degree d;

» Constraints from mass dimension
2d; + Dim(M,) = --- = 2d,, + Dim(M,,)

Only 1 degree of freedom in {d;}, chosen as d,,x = Max {d;}
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Determine relations

» Decomposition of Q;(D,s,n)
Qi(D.sm) = QD) syt sy

(Ao, N)eQ; T

= Y P IpR(D) st sl =0
kvavﬁ
> Linear equations: f.°"""""(Q) =0

With enough constraints = Qi’lo""l’" (D)

With finite field technique, only integers in a finite field are involved,

equations can be efficiently solved
» Relations among ¢ = {M,,M,, ..., M, } with a fixed
d,.x are fully determined
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Reduction

» With ¢ = G, U G,, assume

* (, is more complicated than G,

 (G,can be reduced to G,

» Algorithm Search for simplest relations
1. Setd,,x=0

2. Find out all reduction relations with fixed d .«
3. If obtained relations are enough to determine G,, stop; else d,,.x + + and

go to step 2

» Question: how to choose ¢; and G,?

1. Relations among G;and G, are not too complicated: relations easy to find

2. Size of G, is not too large: relations can be efficiently used numerically
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Scalar reduction

> Scalarintegral: v = (v, ...,vy),v; = 0

0% = Identity, m* = (m — 1)*1%
1+(511;0)3) — {(6)110;3)1 (5)2;0)3); (5;1)014)}
1_(5)110;3) — {(4)1)013)) (51010)3)1 (5)1)012)}

> 1-'00p: G1 = 1+17, GZ = 1_1+17 Duplancic and Nizic, hep-ph/0303184
» Multi-loop:
Gi=m"v,G,={1"m ", 1" (m—-1)",..., 171 W

The size of G; is not too large, about dozens of integrals

Relations among G;and G, are not too complicated, see examples

A step-by-step reduction is realized!
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g+g—H-+H

g+g9g—g+g+g

Sector| Type|dmax | m™ |Sector| Type|dmax [m™
I(a) |7-NP| 1 | 3% | 2(a) |8-NP| 1 [3T
1(b) | 7-P 1 [ 37 ] 2(b) |8&NP| 3 |3T
I(c) |6-NP| 5 |37 | 2(c) |7-NP| 4 |37T
1(d) | 6-P 4 |27 ] 2(d) |6-NP| 2 |3T

Difficulty:

« More legs > less legs
* Nonplanar > Planar

e mte>mtv

« The reduction is obtained by a single-core laptop
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Tensor reduction (preliminary)

» Rank-R tensor integral
D ﬁ*l ... fHR
MM ER —/H d™¢; £i E@R

irP/2 (D + l’n)"”l -+ (DN + in)¥N

» Tensor decomposition
Mins = 57 4D, 5, m) x T (g, p)

Y
A= (T-T);'T; M, A=KI+J

J
rank-R integrals, containing irreducible scalar products (ISP)

I
f’ integrals in sub-sectors or with lower rank
A can’t be directly reduced to scalar integrals, different from 1-loop .,



Tensor reduction (preliminary)

» Goal: to find nontrivial relations among A
together with trivial relations A=KI+],to

reduce 4 to simper integrals

A in general has lower mass dimension than |

Possibility for simpler relations

» Example: rank-2 tensors

G, ={1%,0%} e @ {£41e42, il ot g2}

Gy = 17178 @ (212, oo, g )

U{1*, 1717} ® (¢}, 44}
Amax = 2

27/31



Comparison with IBP reduction

> IBP relations can be obtained very fast, but itis
a problem how to use them

« Analytical: almost impossible for multi-scale problem
 Numerical: very time consuming because the relations are fully coupled,

each phase space point may need hours to days

» Our reduction strategy

 Needs time to obtain relations, but 1) relations are analytical that can be
used for any phase space point; 2) according to cutting-edge examples,

the time is tolerable

« Use our relations numerically: very efficient because relations are

decoupled to small blocks, similar to one-loop case
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Summary

» Find a new representation for Feynman integrals,
conceptually translates the loop calculation to the
problem of performing analytical continuations

» Propose a new reduction strategy, which may
overcome difficulties encountered in IBP reduction

> Two-loop example gg —» HH, gg — ggg: correctness
and efficiency of our reduction method
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