CEPC CDR Detector Concepts for Calorimetry

Jianbei Liu

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

> Topical Workshop on the CEPC Calorimetry IHEP, Beijing March 11, 2019

Primarily for the Higgs physics program at CEPC

Physics process	Measurands	Detector subsystem	Performance requirement
$\begin{array}{l} ZH,Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H ightarrow b ar{b} / c ar{c} / g g$	${ m BR}(H o b ar{b}/car{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H \rightarrow q \bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E=3\sim4\%$ at 100 GeV
$H \to \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$

CEPC Detector Concepts in CDR

Baseline : PFA approach (derived from ILD) Silicon + TPC

+ PFA-ECAL&HCAL + Muon

Alternative : IDEA

Silicon + Drift Chamber + Dual-readout calorimeter + Muon

Calorimeter outside the coil

Another tracking option with full-silicon

Jet measurement at CEPC

- Separation of W/Z bosons in their hadronic decays translates into a jet energy resolution requirement of ~ $30\% / \sqrt{E}$ (or 3-4% in the energy range of interest).
- The chief factor driving the design of the CEPC calorimetry system.

WW \rightarrow 4j and ZZ \rightarrow 4j

Other Drivers

• EWK physics

. . .

- Precise e/γ measurement
- $-\gamma/\pi^0$ discrimination
- τ and heavy flavor physics - π^0 identification

Mostly concerning ECAL

CDR Calorimeter Concepts

- Approach with Particle Flow Algorithm
 - Sampling electromagnetic and hadronic calorimeters with extremely high granularity

- A dual-readout calorimeter
 - A combined solution with good performance for both electromagnetic and hadronic particle showers.

Particle Flow Algorithm

• Particle Flow Algorithm (PFA) : a very promising approach to achieving the unprecedented jet energy resolution of 3%-4%.

Traditional jet measurement with calorimeters

Jet measurement with PFA

 A highly segmented (both transversely and longitudinally) and fully-contained calorimetry system combined with a transparent and high-resolution tracking system.

PFA Calorimeter Technologies

Granularity (3-d) is the key Front-end electronics must be embedded in detectors

CEPC PFA-ECAL

- Tungsten as absorber
 - short radiation length, small Moliere radius, large X_0/λ
- Two types of sensitive layers
 - Silicon pads: stable, uniform, high S/N, large dynamic range, but costly.
 - Scintillator strips + SiPM
- So two options
 - Baseline: Si-W
 - Alternative: Sci-W

Design Optimization (I)

Total absorber thickness \rightarrow 84 mm

- 30 sampling layers
- 0.5mm silicon
- 2.1mm W for first 20 layers
- 4.2mm for last 10 layers

Single photon measurement

Design Optimization (II)

$H{ ightarrow} gg$		
Higgs mass in $H \rightarrow gg$ vs. cell size		
Silicon sensor size	Higgs boson mass resolution	
(mm)	(with statistic error)	
5	3.74 ± 0.02 %	
10	$3.75 \pm 0.02~\%$	
20	$3.93 \pm 0.02~\%$	

$Z \rightarrow \tau \tau$

Percentage of inseparable photons from τ decays in $Z \rightarrow \tau \tau$ events

Cell size (mm)	Percentage of inseparable photons	
	0.07%	
5	0.30%	
10	1.70%	
20	19.6%	

Cell size \rightarrow 10×10 mm²

ECAL Baseline Design

- A Si-W sandwich calorimeter
- Absorber
 - 30 layers of W plates
 - First 20 layers: 2.1mm thick each
 - Last 10 layers: 4.2mm thick each
 - -84 mm thick in total (24 X₀)
- Active medium
 - 30 layers of Si plates
 - 0.5 mm thick each
 - Cell size: 10*10 mm²

Layout and Structure

- One cylindrical barrel + two disk-like endcaps
- ~2 m in radius, and ~5.3 m long.
- 8 barrel sections: 1 section → 8 staves, 1 stave → 5 modules, 1 module → 5 columns
- Each endcap \rightarrow 4 quadrants, 1 quadrant \rightarrow 9 columns
- Column: slabs integrated into supporting structures
- Best possible hermeticity and minimum crack regions

Channel Count, Power Consumption

• Numbers of channels

- 17.3 M for barrel, 7.43 M for endcaps

- Total power consumption
 124 kW (SKIROC) + 22 kW (DIF) ~ 146 kW
- Active cooling is likely required. Passive cooling might be possible with a reduced density of channels.
 - For example, with a cell-size of 20mm*20mm?

An Alternative ECAL: Sci-W

- Big advantage is in cost
- The primary difference is in active layer thickness
 - 2 mm thick scintillator
- Scintillator read out with SiPM
- SiPM monitoring and calibration is required

"Crossing" configuration of strips to get a high effective granularity

Cell-size: 45mm*5mm

CEPC PFA-HCAL Options

- HCAL technology options in CDR
 - SDHCAL with RPC (baseline) -
 - SDHCAL with THGEM
 - AHCAL with scintillator + SiPM
- Fe as absorber in all options
- Digital HCAL requires a higher readout granularity than analogue HCAL to avoid saturation for high energy showers
 - More channels with digital HCAL

Read out with multiple thresholds: Semi-digital HCAL \rightarrow SDHCAL

mode for E_{heam} > 40 GeV

HCAL Optimization (I)

• SDHCAL resolution with different numbers of sampling layers.

HCAL Optimization (II)

• AHCAL with various cell sizes and in nonuniform cell-size configurations.

By Huong Lan Tran etc.

HCAL Conceptual Designs

- 40 layers
- Absorber: Fe (steel) - 40 layers \times 2cm, 5 λ_1
- Active layers
 - SDHCAL
 - glassRPC, 6mm thick
 - cell-size: 1cm×1cm
 - AHCAL
 - Sci (3mm) + SiPM, ~5mm thick
 - cell-size: 3cm×3cm

Very compact glass RPC unit

Embedded readout electronics

SiPM-on-Tile

Geometry and Layout

SDHCAL

T.e

Channel Counts, Power Consumption

- HCAL Barrel, R_{in} = 2.3m, R_{out} = 3.34m, length = 2.67*2=5.34m, N_{layer}=40 Area of HCAL barrel = 2*PI*[(R_{in}+R_{out})/2]*L*N_{layer} = 3782 m²

- HCAL Endcap (2), R _{in} = 0.35m, R _{out} = 3.34m, N _{layer} =40
Area of HCAL endcap = 2*PI*(R _{out} *R _{out} - R _{in} *R _{in})*N _{layer} = 2772 m ²

Cell Size \ channels	HCAL Barrel	HCAL Endcap	Channels (N _{ch})	Power AHCAL	Power SDHCAL
1cm x 1cm	37.82M	27.72M	65.5M		110 kW
2cm x 2cm	9.455M	6.93M	16.4M		52 kW
3cm x 3cm	4.2M	3.08M	7.3M	110 kW	43 kW
4cm x 4cm	2.36M	1.73M	4.1M	88 kW	
5cm x 5cm	1.51M	1.11M	2.6M	77 kW	

Power Consumption (rough estimation): AHCAL: $7mW/ch * N_{ch3} + 9W/DIF/m^2 * 6554$ (59kW) SDHCAL: $1mW/ch * N_{ch1} + 5.4W/DIF/m^2 * 6554$ (35.4kW)

> Active cooling is likely needed. Water cooling should be sufficient.

Simulated Performance of PFA ECAL+HCAL

Figure 5.32: The left plot is the energy resolution from the SiW-ECAL and AHCAL for pions. The right plot is the corresponding results of reconstruction energy linearity. The energy resolution is 11% and 8% for energy at 20 GeV and 80 GeV, respectively.

Dual-Readout Calorimeter

Fiber pattern RD52

Reconstruct f_{EM} on an event basis \rightarrow Alternating quartz and and scintillating fibers in metal matrix.

$$S = E \left[f_{em} + \frac{1}{(e/h)_{S}} (1 - f_{em}) \right]$$
$$Q = E \left[f_{em} + \frac{1}{(e/h)_{Q}} (1 - f_{em}) \right]$$
$$E = \frac{S - \chi Q}{1 - \chi}$$
with $\chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{Q}} \sim 0.3$

Geometry and Layout

- Wedge geometry
- Full coverage

Simulated Performance

With copper as absorber

	Fitted Gaussian		Fitted Gaussian
fibers used	em energy resolution	fibers used	hadronic energy resolution
S-fibers only	$\sigma/E = 10.1\%/\sqrt{E} \oplus 1.1\%$	S-fibers only	$\sigma/E=30\%/\sqrt{E}~\oplus~2.4\%$
C-fibers only	$\sigma/E = 17.3\%/\sqrt{E} ~\oplus~ 0.1\%$	C-fibers only	$\sigma/E=73\%/\sqrt{E}~\oplus~6.6\%$
S-fibers and C-fibers	$\sigma/E = 10.1\%/\sqrt{E} \oplus 0.4\%$	Dual-readout S-fibers and C-fib	$\sigma/E = 34\%/\sqrt{E} \oplus \text{ (negligible)}\%$

PID Capability

test beam data

NIM A 735 (2014) 120

Figure 5.44: Distribution of four discriminating variables for 60 or 80 GeV electrons and pions, as measured with the RD52 lead-fiber prototype [33]: (a) energy fraction deposited in the hit tower; (b) C/S signal ratio in the hit tower; (c) starting time of the PM signal; (d) ratio of the integrated charge and the amplitude of the signals.

Choice of Absorber Material

Effect on magnetic field

Litiuto Nazionale di Fisica Nucleare

Copper absorber

Iron absorber

Iron absorber in endcap Copper absorber in barrel

	1.995e+000 : >2.100e+000
	1.890e+000 : 1.995e+000
	1.785e+000 : 1.890e+000
	1.680e+000 : 1.785e+000
	1.575e+000 : 1.680e+000
	1.470e+000 : 1.575e+000
	1.365e+000 : 1.470e+000
	1.260e+000 : 1.365e+000
	1.155e+000 : 1.260e+000
	1.050e+000 : 1.155e+000
	9.450e-001 : 1.050e+000
	8.400e-001 : 9.450e-001
	7.350e-001 : 8.400e-001
	6.300e-001 : 7.350e-001
	5.250e-001 : 6.300e-001
	4.200e-001 : 5.250e-001
	3.150e-001 : 4.200e-001
	2.100e-001 : 3.150e-001
	1.050e-001 : 2.100e-001
	<0.000e+000:1.050e-001
Den	sity Plot: B , Tesla

Femm study

G. Gaudio – IAS Program High Energy Physics – Conference – Jan. 21–24th, 2019

Photon Detection and Readout

- Staggered SiPM readout to avoid cross-talk
- Small-pitch SiPM needed for scintillation light
- Compact readout electronics with stacked structure
- 8 fibers/channel \rightarrow 5.6 mm granularity, 25 M channels

Summary

- PFA Concept
 - ECAL: 30 layers, W, 24 X₀
 - 10mm*10mm Si pads; 5mm*45mm scintillator strips
 - HCAL: 40 layers, Fe, 5 λ_{I}
 - SDHCAL: 1cm*1cm; gRPC, THGEM
 - AHCAL: 3cm*3cm; scintillator tiles + SiPM
- Dual readout concept
 - Cu/Fe, 10 $\lambda_{\rm I}$
 - Scintillation fibers + quartz fibers