

SiW-ECAL Progresses and Challenges

Víncent Boudry

LLR, École polytechnique, Palaiseau

for the SiW-ECAL groups

IT Accelerator Engineering Center ITAEC

Topical Workshop on the CEPC Calorimetry, 12/03/2019, IHEP

Requirements from detectors

Basis: sep of H \rightarrow WW/ZZ \rightarrow 4j - $\sigma_7/M_7 \sim = \sigma_W/M_W \sim = 2.7\% \oplus 2.75\sigma_{sen}$

 $\Rightarrow \sigma_{\rm E}/{\rm E}$ (jets) < 3.8%

 $- Sign ~ S/√B ~ (resol)^{.1/2}$ 60%/√E → 30%/√E ⇔ +~40% L

Large Tracker

- Precision and low X₀ budget
- Pattern recognition

High precision on Si trackers

- Tagging of beauty and charm

Large acceptance

Fwd Calorimetry:

- lumi, veto, beam monitoring

Imaging Calorimetry

H. Videau and J. C. Brient, "Calorimetry optimised for jets," in Proc. 10th International Conference on Calorimetry in High Energy Physics (CALOR 2002), Pasadena, California. March, 2002. SiW-ECAL, Progress & Challenges, CEPC CALO WS, 12/03/2019 2/43

Vincent.Boudry@in2p3.fr

An Ultra-Granular SiW-ECAL for experiments

Particle Flow optimised calorimetry

- Standard requirements
 - Hermeticity, Resolution, Uniformity & Stability (E, (θ , φ), t)
- PFlow requirements:
 - Extremely high granularity
 - Compacity (density)

SiW+CFRC baseline choice for future Lepton Colliders:

- Tungsten as absorber material
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{ mm}, \lambda_I = 96 \text{ mm}$
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design: Sensor+RO≤2mm
 - Allows for ~any pixelisation
 - Robust technology
 - Excellent signal/noise ratio: ≥10 Intrinsic stability (vs environment, aging) Albeit expensive...
- -

To be assessed

by prototypes

Tungsten–Carbon alveolar structure
 Minimal structural dead-spaces
 Scalability

Silicon Sensors

Cost driver

- ~30% of the total cost of the SiW-ECAL
 - ⇒ Units Cost reduction(CALIIMAX ANR program)
- Decoupling of Guard Ring (Square Events).
- new design of ILD detector

Command Sensors (@ Hamamatsu)

- △ Minimal cost of Command ≥ 20k€
- direct contact with HPK engineers
- Possibility of design for 8" in 186mm alveola 320 \rightarrow 550, 650 \rightarrow 725 μm ?

Wafers glued

onto PCB's

- - "Square events"
 - cross talk between guard rings and pixels

'quantum unit' of ILD dimensions (here 6" wafer)

Vincent.Bouchy Survey Orve

UNV-LUAL, I TUYIGOS & UTRITCHYGS, ULI U UALO WS, 12/03/2019

Guard Ring Studies (HPK)

Baby wafers: contig. & segmented Guard ring - 0, 1, 2, 4

- Floating 1 GR \Rightarrow 'square events'
- Addit'I GR \Rightarrow higher BD voltage

Cuts size ~ insensitive edge

- Cut size B = 500 μm
- Cut size C = 350 μm

Prelim Conclusions:

- − 320µm cut size C ✓
- 500 µm cut size B preferable

new 2018: 550 & 650µm wafers

- no yet used

6/43

SKIROC2 / 2A Analogue core

SiW-ECAL Building blocks: SLAB's & ASU's

R&D for "mass production" and QA

- Quality tests & preparation of large production
- Modularity \rightarrow ASU & SLABs
- Choice of square wafers
 - (≠ from hex: SiD, CMS HGCAL)
- Numbers (RECAL = 1,8 m, |ZEndcaps|=2,35m) (likely to be reduced by 30–40%)
 - Barrel modules: 40 (as of today all identical)
 - Endcap Modules: 24 (3 types)
 - ASUs = ~75,000
 - Wafers ~ 300,000 (2500 m²)
 - VFE chips ~ 1,200,000
 - Channels: 77Mch
 - Slabs = 6000 (B) + 3600 (EC) = 9600
 - \neq lengths and endings

Tests of producibility

(cooling) Shielding PCB (FeV) 16 SK2 ASICs CALICO 1024 channels ASU Wafer (4) Adapter board (SMB) U layout of a short slab Carbon+W

Vincent.Boudry@in2p3.fr SiW-ECAL, Progress & Challenges, CEPC CALO WS, 12/03/2019 layout of a long slab

Tests of feasability

ASU: 11 years of R&D

Most complex element: electro-mechanical integration

- Distrib / Collect signals from VFE (ASICs), Analog & Digital with dyn. range ≥ 7500
- Mechanical placer & holder for Wafers \rightarrow precision
- Thickness constraints

Vincent.Boudry@in2p3.fr

Milestone	Date	Object	Details	REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st prototype of a PCB	2010	FEV7	8 SK2	СОВ
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50– 75%
1 st run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%
1 st SLABs	2016	FEV11	7 units	
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trig,} 6–8 % masked
1 st technological ECAL	2018	SLABvFEV11 & FEV13 SK2a+ Compact stack Long Slab	SK2 & SK2a (⊃timing) 8 ASUs	Improved S/N Timing

Assembly chain Paris

6.00.4

ASU 34, 13 oct 2015

• 100 • 101 • 102 • 108 • 108 'Simplified view'

Kapton

Interconnexion

Kanton

r SiW-ECAL, Progress & Challenges, CEPC CALO WS, 12/03/2019

Data-Quality: 10 SLABs produced in 2016

Forge Page (redmine in2p3, LLR) Boards

ueil	Ma page Projets Statistiques	Scrum Aide		Connectó
	sU_3_8_1_#_9	LAL/ok	For tests	
	sU_3_8_1_#10	LLR/ok	On detector	
	sU_3_8b_1_#11	LAL/Broken	Issue with HV gluing - Museum part	
	sU_3_8b_1_#12	LAL/Maintenance	Issue with HV gluing, to be reassembled	
	sU_4b_11_F_#13 SLAB13 🚵	BT@LAL	Issue with gluing, FIXED; addtionnal HV coupling filter	
	sU_4b_11_F_#14 SLAB14 🙈	LLR	High leakage; 1 wafer has problem	
	sU_4b_10_F_#15 SLAB15 🛷	BT@LAL		
	sU_4b_11_F_#16 SLAB16 🖋	BT@LAL	Issue with interconnects, FIXED	
	sU_4b_11_F_#17 SLAB17 🖋	LLR		
	sU_4b_11_F_#18 SLAB18 🖋	BT@LAL		
	sU_4b_11_F_#19 SLAB19 🚵	BT@LAL	SHORT on DVDD, repaired, TESTED partly OK	
	sU_4b_11_F_#20 SLAB20 🛹	LLR		
	sU_4b_11_F_#21 SLAB21 🚵	LLR	LVDS res. missing	
	sU_4b_11_F_#22 SLAB22	BT@LAL	LVDS res. missing	

		PASSPORT, SIWLC ECAL S	LAB 20
		SLAB ID	
Slab ID : 18			
ASU version :FEV	/11		
Skiroc version :	Skir	oc2	NASICS: 16
DIF ID :	39	Firmware version : 1603	
SBM ID : V4b 22			SMBversion : SMBV4

Kapton tape covering the internal face of the aluminum plate that covers the ASU.

Wafers ID/Info : ?

Comments

Blue led looks too clear

Files: Wafer test (LPNHE),

Passport (LAL) Commissioning

PASSPORT, SIWLC ECAL SLAB 20

SOLDERING POINTS, CABLING, etc (visual inspection)

Turn around the slab and check soldering points in : - DIF resistors (for slow control) OK -HV (GND at SMB) Ok Resoldered around HV at bottom slab (Jerome)

comments and others : - aluminum plate is not grounded. - bottom of the slab (aluminum) is arounded.(between 2-50 ohm)

Turn slab around, open aluminim cover and do a check of soldering points : Ok (Jerome)

comments and others :

ELECTRICAL + SIGNAL CHECKS (multimeter)

Ele	ctrical checks	(NOT POWERED SLABS)		
	Comments			
GND/PCB	OK			
RESISTOR/DVDD	OK .			
SlowControl :	0k			
\$4-\$16	ok .			
SRIN-SROUT	ok			
Readout Return 59-521	ok			
GND HV and bottom PCB	0k			
No shortcuts between VDDA/VDD/GND	0k			

			100	ctrical checks (Low Vutlage on)			
				Comments			
Sector and the sector of the s		Green LED in SLAB	0k				
Commissioning by : A. Irles		BLUE LED light (DIF) blinking	ok.				
		1.2V and 2.5V in J3 and J4 (DIF)	ok				
at : LAL, ECAL workshop		VDDA	ok ?	3.3.V			
		VDDD	ok	3.3 V			
setup : Prototype rack (as used in 2016). PVC prototype for sin	Configure : RED LED blinks	0k]			
Cable : HV 5 connected to first HV connector in patch pannel. Slabidif 1, connected to first connector in patch pannel. GDCC V1_1, port 1							
		Comments :					
Single Slab Commisioning	1, 31st May 2017	Single Slab Commisioning		2, 31st May 2017			

Second assembly bench @ Kyushu

Gluing FEV and SMB to FPC © Taikan Suehara, Kyushu U.

Newly introduced automatic alignment (X-Y with camera and Z with laser)

ogress & Challenges, CEPC CALO WS, 12/03/2019

FEV placed manually

Beam-test 2015-2018

13/43

Mechanical Assembly for SLABs

Assembly bench for:

- Fragile Wafer
- Precision of PCB's ~ 50µm
 ⇒ precision of 100µm on SLAB
- Interconnection

Connections to be handled by industry

- Dedicated Kaptons X
- Connectors

End of Slab and DAQ R&D

1st 'electric long slab' (2018)

Support of interface boards + 12 ASUs (DBD)

-2+6+4 ASUs = -3.2 m

Plato from double

pixel crossing

Trigger Threshold

Error Function

Fit = modLG * erf

 $modL(x,\mu,\sigma) = (1-c) * L(x,\mu,\sigma) + c * \int_{z}^{+\infty} \frac{L(t,\mu,\sigma)}{t} dt$ $modLG = \int_{-\infty}^{+\infty} modL(t, \mu, \sigma) * G(x - t, \mu_G, \sigma_G) dt$

- Rotatably along long axis (for beam test) Rigidity : $\leq \sim 1 \text{ mm per ASU}$
- Total access to upper and lower parts

Fit with Mod LanGau function

320µm Baby wafers (4×4 pixels) on the bottom ٠

LanGauss 1 MIP

LanGauss 2 MIPs

BMS

 γ^2/nd

Width

Area

GSigm

Width2

MP2

Area2

AnoleCa

Errentre

EnWidt

Vincent.Boudry@in2p3.fr SiW-ECAL, Progress & Challenges, CEPC CALO Vv5, T2/03/2019

11412

97.49

145

393.7 / 339

 10.58 ± 0.18 138.8 ± 0.1

96±0.0331

285.1+1.5

33 84 + 1 2

+05 ± 1.373e+03

0.2541 ± 0.002

48 52 + 0.3

6.0660+04 + 1.8920+03

ILD conception

Vincent.Boudry@in2p3.fr CALICE/ILD – CS LLR, 11/02/2019

A crack-less ECAL geometry

ILD ECAL Uniformity

Modules

CFRC+W Structures ILD Design

Static and Dynamic Simulations

Simulation

simhitNoConvEnWtCosTh_BARREI

module

IOGeV. -5<phi<5 dea

plugLength = 0 mm

towers

ECAL driver used in ILD models has been largely rewritten (Mokka \rightarrow DD4HEP)

- more modular code:
- less duplication Barrel & Endcap
- more configurable...

Effect of cracks [RAW= no correction at all!!]

- Drop ~ 15%

hted silicon energy deposit Effect of plug (missing in previous simulations)

2 345

0.2067 Std Dev x

0.8 07

Rails, Cables & Pipes (Services)

Vincent.Boudry@in2p3.fr SiW-ECAL, Progress & Challenges, CEPC CALO WS, 12/03/2019

24/43

Active cooling

R&D using CMS studies (Thanks to Th. Pierre-Emile from CMS-LLR group)

↓ ↓ ↓ ↓ P

Passive cooling

Active cooling

Passive cooling ramp example

___X

Passive cooling ramp set up test

Active cooling set up test with water at room temperature

Active cooling test layout (400mm x 300mm x 3mm thick copper plate with 1,80D pipes embedded)

J.C. Brient @ CEPC 2018

Active cooling

R&D using CMS studies (Thanks to Th. Pierre-Emile from CMS-LLR group)

Copper plate prototype dimensions information

Pipe insertion on a cooling prototype

П

Vincent.Boudry@in2p3.fr

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling ٠

Thermal static CFD analysis thermal field example using Fluent with 100W extracted and water mass flow rate of 7q/s through 1,5mm ID pipe

26/43

Siv-ECAL, Progress & Challenges, CEPC CALO WS, 12/03/2019

Redefinition of dimensions

- Full costing (hardware and man-power) and integration planning done by Henri Videau
- 3 designs looked at

under work version of **ECal Technical Design Document** (TDD, ~100 pages) by Henri Videau (LLR), Marc Anduze (LLR) and Denis Grondin (LPSC)

- a "baseline" (or "large") with inner ECal radius at RECal =1804mm, (model close to the DBD) with 30 layers
- a "small ILD" model RECal ~1500 mm (all related quantities adapted $\leftrightarrow R_{outer}^{Endcaps}$)
- a model with slightly reduced number of layers = 26 layers
- 725µm thickness with 200mm (8") wafers ; 5.08 \rightarrow 6mm cell size
 - ~ identical photon resolution expected
 - 13% gain cost on Silicon surface, PCB, and 40% on electronics (and power consumption) wrt DBD
 - Improved S/N ratio & timing, less channeling @ 90°

Tiling

Conclusions & perspectives

Technical Milestones:

At hand on CALICE prototype:

- Workable, scalable design
- ASU with 1024 channel
 - Signal/Noise > 10 (trigger), 20–30(ADC)
 - on-going: HE e- response
- Reduced GR event rates

On-going on ILD-like design

- Connection over 8 ASU's
- Mechanics & Cooling modelised
- Thicker & larger wafer (S/N ◄)
 - red. number of layers, dead zones
- Compact DAQ

Next steps

- Final chips (SK3-like): full 0-suppr ...
 - machine dependant (duty cycle, timing)
 - continuous running for circular colliders
 - Embedded cooling
- Industrial aspects (components, aging, ...)
 - Double Layered Long Slab Prototype
 - Design with Larger & Thicker wafers
 - Cost ~ stable
 - Demonstrator for industry
 - Estimated cost ~160k€ / piece

BACK-UP

Parameter optimisations

Reduced number of Layers

Going from 30 to 22 layers

- Reduction of cost; (small) reduction of R_M ; increase of Energy resolution
 - "better separation at the expanse of the intrinsic resolution"

Increasing the Si thickness to 725µm, if really feasible (next slide)

Energy resolution $\sigma(E)/E$:

- for 22 layers w.r.t. 30: +16.8%
- with 725µm w.r.t 500µm : -6.1%

ECal thickness = 190.1 mm (close to 185 mm of DBD).

- 22 layers = 14 layers with 2.8mm thickness
 - + 8 layers with 5.6mm shared between structure and slabs.
- Study needed on separation, resolution and efficiency performances at low energy.
 - JER : $\sigma(E_{\rm J})/E_{\rm J}$ +10% for 20 layers (500 $\mu m).$

Cost Structure of ILD

Integration in ILD: thermal studies by Denis GRONDIN / Julien GIRAUD (LPSC)

Puissances ASU / S	LAB (W)	1	2	1	2
Puissances Front / S	1	1	2	2	
Total ASU SLAB (W))	15	30	15	30
Total FRONT SLAB (W)		15	15	30	30
Т	otal (W)	30	45	45	60

Important thermal inertia => 4 days minimum of stabilization

& Challenges, CEPC CALO WS, 12/03/2019

Test in B field

Magnetic field tests

- Single Slab (21, first layer in the full stack)
- (Magnetic field from 0, 0.5, 1 T) \otimes (With and without beam)
 - Same configuration than in the other beam area.
- Not evident failure/loss of performance during visual inspection on the web cam & online monitor.
- ~20 hours of data in total

FEV13 assembly in Japan

Similar to production in Paris region

We can get data now !

But we have to finish to acquire datas in 4 times, because we have to test 5 SLABs. We already finished only the SLAB.

S/N ratio is about 30.

Mip analysis

O. Korostyshevskíy

Mechanical simulations

- All dimensions of the ILD prototype are defined according to FEA results in static and dynamic (earthquake) conditions and for all positions of final modules in the barrel (8 cases)
- Study of deformations and limit stresses analysis using composite criteria (TSAI-HILL) Max stresses are located on the top ribs, a strong effort is needed to define correctly its thickness
- Proposal: Study internal stresses by using new sensors : optical fiber Bragg grating sensors embedded directly within ribs (strain gauge behaviour)

Vincen

Optical fiber equipped with **BG** sensors

Progress & Challenges, CEPC CAL

Test of SK2A → Timing ?

Adding 5th dimension:

- Can:
 - Improve Particle Flow SW with ~ns mip precision
 - Tracking of particles
 - Removal of late neutrons
 - Identification of back scattered
 - Allow Particle identification by ToF with sub-ns precision
- Clean Clock distribution
 - Shower timing ~ $1/\sqrt{E}$
- @ LHC See presentation on HGCAL

Checked SK2A on Test Board
 — Thorough checks on 1–2 mip injected signal

- All seems OK
- No difference in Analog part
- Trigger:
 - large channel-by-channel adjustment
 - TDC: OK

Integration in ILD: thermal studies by Denis GRONDIN / Julien GIRAUD (LPSC)

Structure composite & séisme

Problem of bending stress of alveoli skins: influence / evolution of thickness of outer plies

Safety coefficient

- Static: Sufficient / to the stress induced by weight of modules
- just sufficient / seism (s =3.2 for Japan?)
 - / risks during integration and transport
- vincent.Boudy bin2ps.t. plies. Impact on ECAL dead zone=0,5mm= 1,extra external ply on modules

Single jet energy resolution as a function of the thickness of PCB with embedded electronics.

Single photon energy resolution as a function of the number of silicon layers for four photon energies.

43/43

W-ECAL, Progress & Challenges, CEPC CALOLD jet energy resolution in the barrel region j cos j < 0: 7 as a function of its radius.

An ECAL average signal versus azimuthal angle. The loss in inter-sensor dead areas is visible (between barrel modules, barrel and endcap

and between the sensors, the latter depends on the guard ring).

the single jet energy resolution after a simple dependent correction as a function of the guard ring thickness.

Resilience

