

Exploration of Homogenous Crystal ECAL for CEPC

Yuexin Wang Manqi Ruan

Topical Workshop on the CEPC Calorimetry, March 11-14

Motivation & Geometry

Key issue: separation of multi-particle shower

Physics requirement of separation

$\pi^{\circ} \rightarrow \gamma\gamma$ at different energy

Proportion of different energy π^0

	Z->99	qqH->X	Ζ- >ττ
Eπ° > 20GeV	0,42%	0.66%	14.9%
Eπ° > 35GeV	0.02%	0,1%	1.8%
Ey < 0.2GeV	45%	42%	7.5%

$\pi^{\circ} \rightarrow \gamma \gamma \gamma at 5 GeV$

Time measurement

Independent time measurement

Intrinsic time resolution of 1×1×40cm³ BGO crystal:

- Single-ended readout, 5 90ps
- Double-ended readout: 5 45ps, effective position resolution, ~ 7mm

Summary

Homogenous crossing strip crystal ECAL

 \checkmark Reduce the number of readout channels to a certain extent

Homogenous structure can offer a more precise energy measurement

 \rightarrow Separation problem of multi-particle shower is not so severe

Multi-dimensional information, (E, x, t)

Explore the potential of fast time measurement & Digitization

A new smarter reconstruction algorithm

First deal with the separation of 2 particles in a 40x40cm cell, especially the reconstruction of π^0 ;

Then move to multi particles; Finally the separation of particles in jet

with the help of other sub-detectors

Thanks!