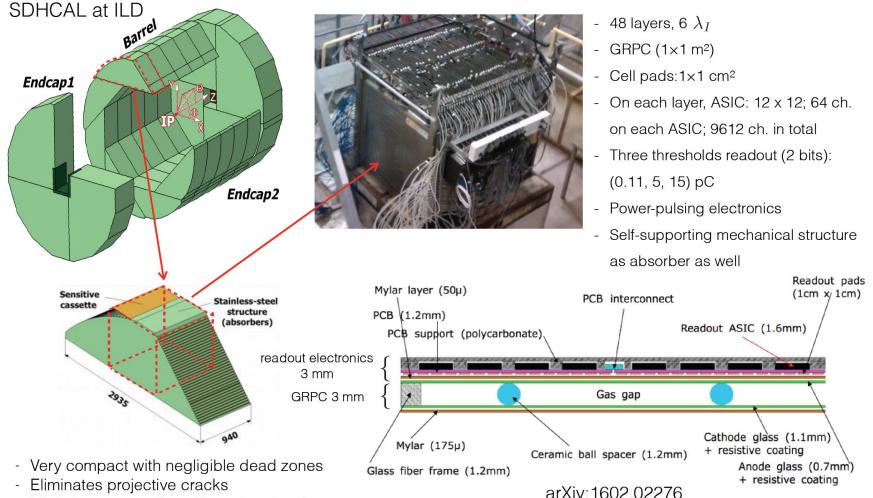
Status of Semi-Digital HCAL

Haijun Yang (SJTU) (on behalf of the CALICE SDHCAL Group)


CEPC Calorimetry Workshop IHEP, Beijing, March 11-14, 2019

Outline

□ SDHCAL Technological Prototype

- Description, Test Beam, Hadronic Shower Studies
- □ R&D for Large SDHCAL Modules
 - Electronics, Mechanical, Gas Distribution
- New PCB Readout Scheme
 - > less readout channels, less power consumption
- MRPC with good time resolution
 - > about 30ps time resolution, help to identify neutrons
- Summary and Conclusion

SDHCAL Prototype

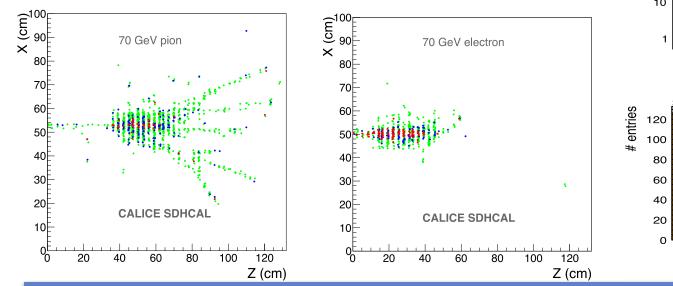
- Minimizes separation of barrel and endcap

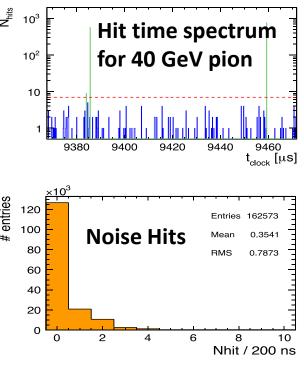
2019/3/12

SDHCAL Prototype Construction

- \checkmark 10500 64-ch ASICs were tested and calibrated using a dedicated ASICs layout.
- \checkmark 310 PCBs were produced, cabled and tested, assembled by sets of six to make 1m² ASUs
- \checkmark 170 DIF, 20 DCC were built and tested.
- \checkmark 50 detectors were built and assembled with electronics into cassettes.
- ✓ DAQ system using both USB and HTML protocol was developed and used.
- ✓ Self-supporting mechanical structure.
- ✓ Full assembly and 5 test beam at CERN since 2012.

JINST 10 (2015) P10039




SDHCAL Performance

□ The SDHCAL prototype was exposed to hadron, muon and electron beams in 2012, 2015 and 2016, 2017 on PS, H2, H6 and H8-SPS lines.

- □ Power-pulsing using the SPS spill structure was used to reduce the power consumption.
- Self-triggering mode is used but external trigger mode is possible
- □ The threshold information helps to improve on the energy reconstruction by better accounting for the number of tracks crossing one pad

□ 2018 TB with SiW ECAL prototype

2019/3/12

Energy Reconstruction (χ^2)

Calibration coefficients [GeV]

0.45F

0.4

0.35

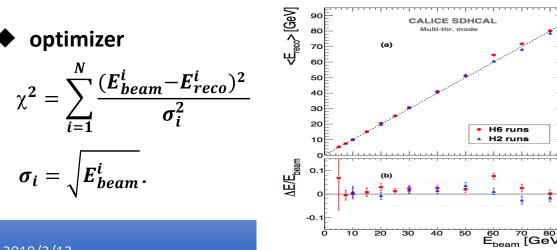
0.25 0.2 0.15 0.1 0.05 CALICE SDHCAL

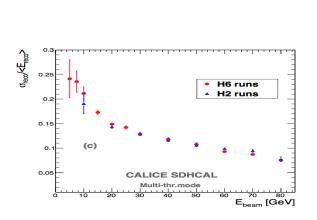
400

600

800

1000


200


Energy reconstruction formula:

$E_{reco} = \alpha N_1 + \beta N_2 + \gamma N_3$

 α, β, γ are parameterized as functions of total number of hits(N1+N2+N3)

$$\alpha = \alpha_1 + \alpha_2 N_{total} + \alpha_3 N_{total}^2$$
$$\beta = \beta_1 + \beta_2 N_{total} + \beta_3 N_{total}^2$$
$$\gamma = \gamma_1 + \gamma_2 N_{total} + \gamma_3 N_{total}^2$$

α

β

γ

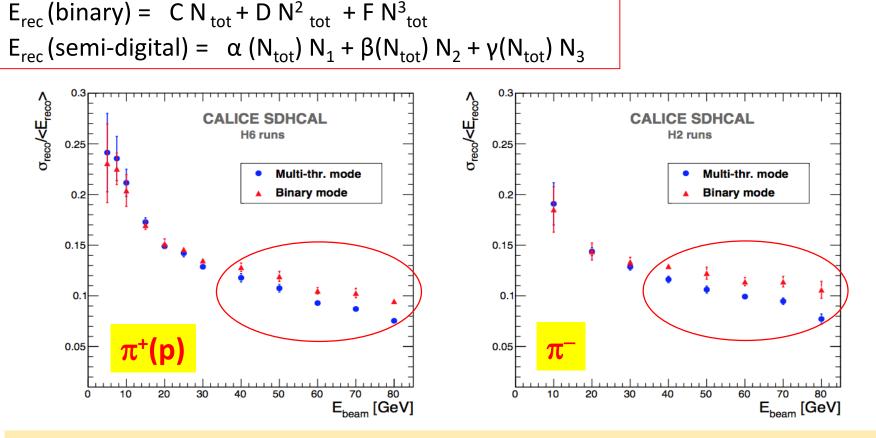
1200

Number of Hits

1400

Energy Reconstruction (MVA)

In Progress


Energy shift reduces from Energy resolution improves Correlation Matrix 3% to 1% level using BDTG about 10-15% using MVA Linear correlation coefficients in % 100 -28 -18 begin 80 σ_{reco} [GeV] 90 86 Interlave Ereco [GeV] 60 9 8 7 6 100 meanRadius 80 E MLP MLP 26 -11 24 100 Density 40 70E BDTG BDTG 35 100 24 nLayer 20 Classical Classical 60F 85 47 100 35 -11 nTrack 14 0 36 100 nCluster 93 50 -20 85 20 22 100 nHough 40 -40 86 100 4 3 2 1 nHit3 30E 100 86 93 81 -60 nHit2 22 87 94 34 nHit1 98 20F -80 20 92 32 nHit 100 98 89 81 100 10 nHit NHit1 NHit2 NHit3 NHough luster ack Densitive and Inter begin σ_{reco} E_{beam} Ereco-Ebeam 0.25 0. E beam 0.08 0.2 **Besides 4 Nhits variables,** 0.06 0.15 0.04 0.1 We add 8 new variables to 0.02 0.05 describe hadronic showers -0.02 10 20 30 50 60 70 80 10 20 30 40 50 60 70 80 40 E_{beam} [GeV]

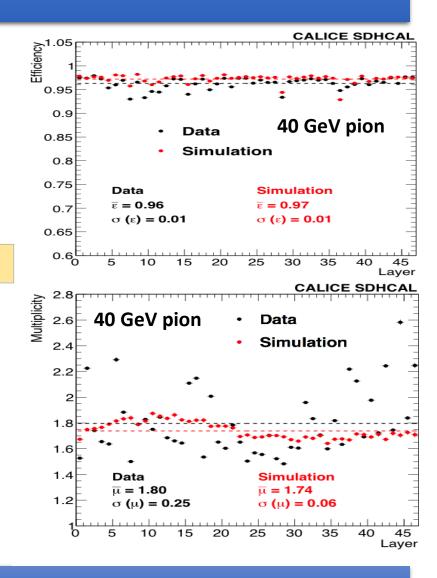
E_{beam} [GeV]

2019/3/12

Energy Resolution (Binary vs 3-threshold)

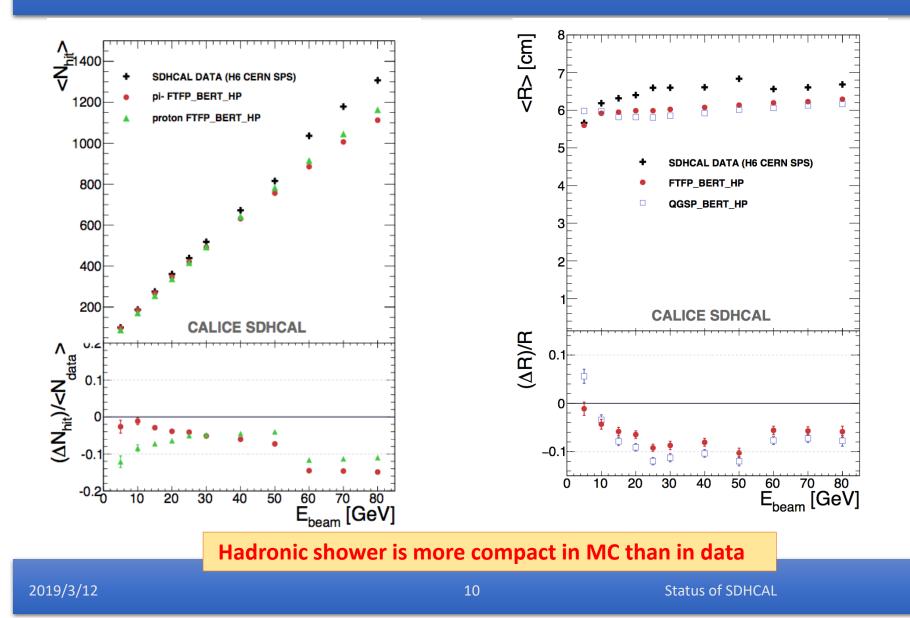
Comparison of semi-digital versus binary readout

Multi-threshold mode performs better than binary mode for energy > ~ 40 GeV

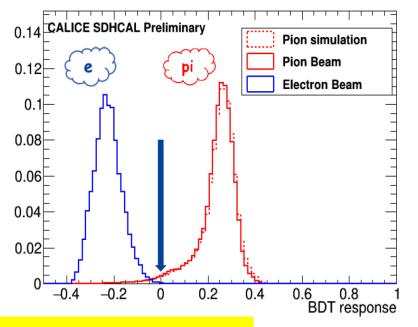

JINST 11 (2016) P04001

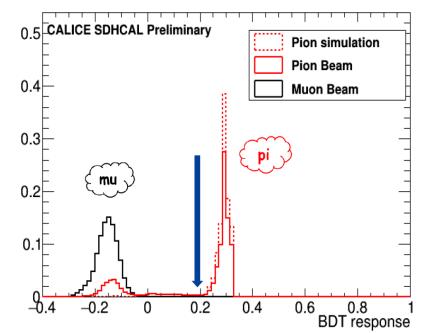
Data vs MC: Efficiency and Multiplicity

SDHCAL Efficiency (Data/MC): 96% / 97% SDHCAL Multiplicity (Data/MC): 1.8 / 1.74


➔ Good Data/MC agreement for efficiency and multiplicity obtained with cosmic muons and test beam muons.

> JINST 10 (2015) P10039 (cm) 90 ∠ (cm) 80-70-60 50-40-30-20-10-80 GeV hadron 0 30 35 40 45 50 5 10 15 20 25 SDHCAL Layer

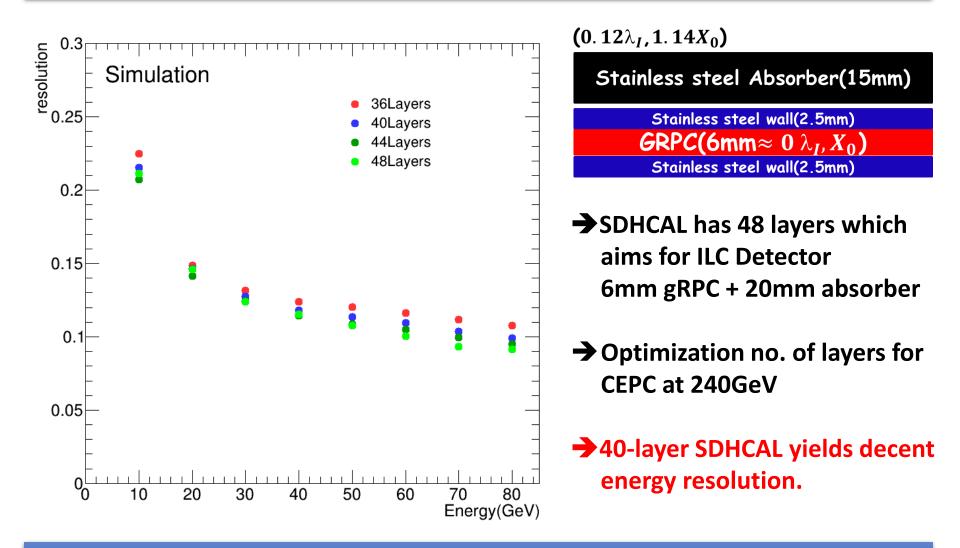



Data vs MC

JINST 11 (2016) P06014

Pion/e, mu ID using BDT

CALICE-CAN-2019-001


- → SDHCAL is a powerful tool to identify pion/e/mu
 → BDT helps to improve the
 - hadron/e/mu PID

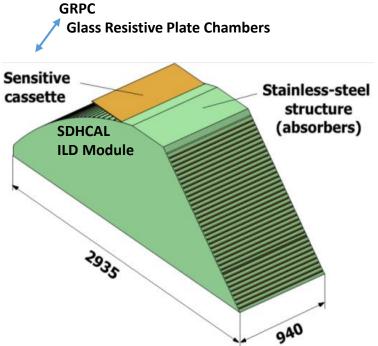
Energy	simple cut			BDT		
	eff_{pion}	$eff_{electron}$	eff_{muon}	eff_{pion}	$eff_{electron}$	eff_{muon}
10 GeV	55.7%	0.0%	0.1%	55.7%	0.0%	0.0%
20 GeV	70.5%	0.0%	0.3%	70.5%	0.0%	0.0%
30GeV	80.9%	0.0%	0.6%	80.9%	0.0%	0.1%
40GeV	87.2%	0.1%	0.6%	87.2%	0.0%	0.1%
50 GeV	90.6%	0.1%	0.9%	90.6%	0.1%	0.1%
60 GeV	93.0%	0.2%	1.0%	93.0%	0.2%	0.2%
70GeV	94.7%	0.3%	1.2%	94.7%	0.2%	0.2%
80GeV	95.7%	0.3%	1.1%	95.7%	0.2%	0.2%

2019/3/12

Status of SDHCAL

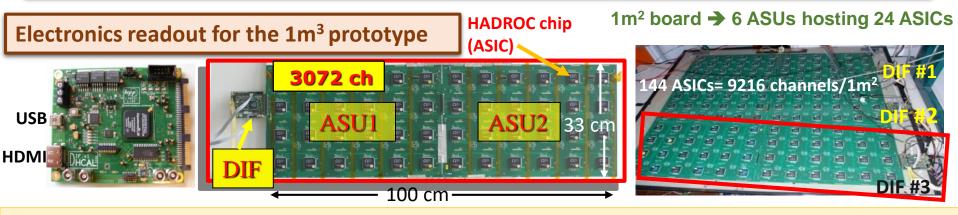
Energy Resolution vs No. of Layers

SDHCAL for Future Experiments

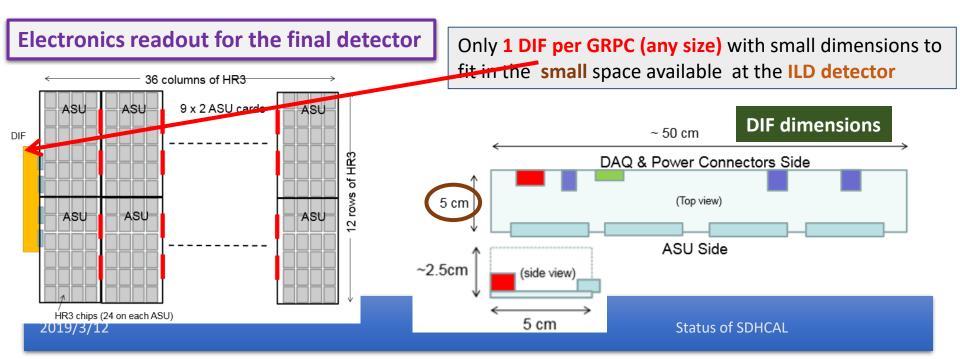

 \Box Detectors as large as $3m \times 1m$ need to be built

Electronic readout should be the most robust with minimal intervention during operation.

□ DAQ system should be robust and efficient


Mechanical structure to be similar to the final one

□ Envisage new features such as timing, etc..



Goal: to build new prototype with few but large GRPC and new components

New Electronics

1 DIF (Detector InterFace) for 2 ASU (Active Sensor Unit.- PCB+ASICs) -> 3 DIFs for ONE 1m² GRPC detector

New Electronics: ASICs

(GeV)

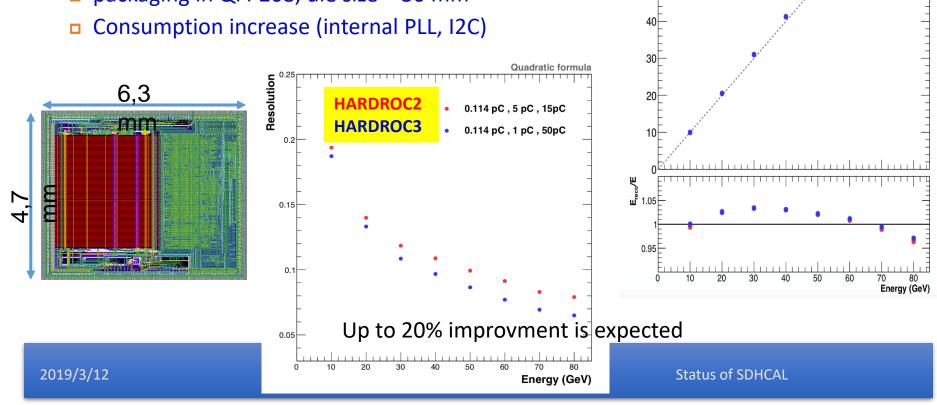
energy 80

Reconstructed

70H

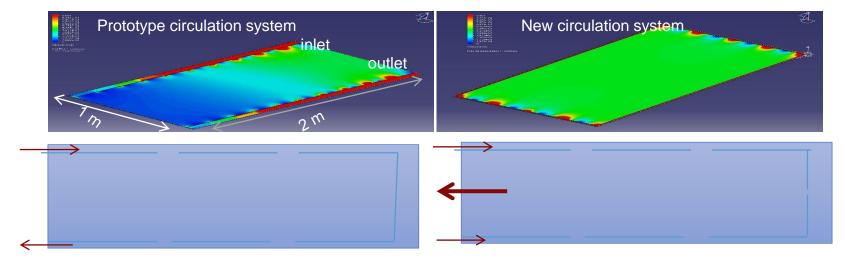
60H

50H

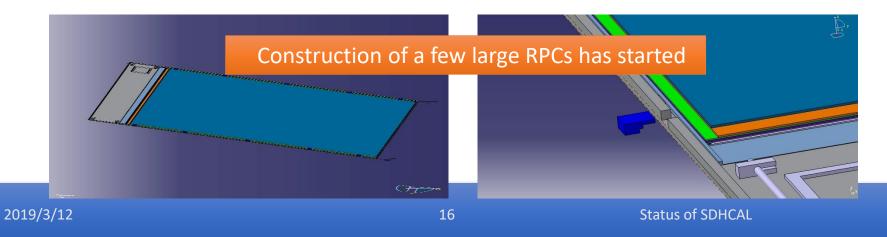

0.114 pC, 5 pC, 15pC

0.114 pC, 1 pC, 50pC

Quadratic formula


HARDROCR3 main features:

- **Independent channels**
- **Zero suppress**
- Extended dynamic range (up to 50 pC)
- I2C link with triple voting for slow control par.
- packaging in QFP208, die size ~30 mm²



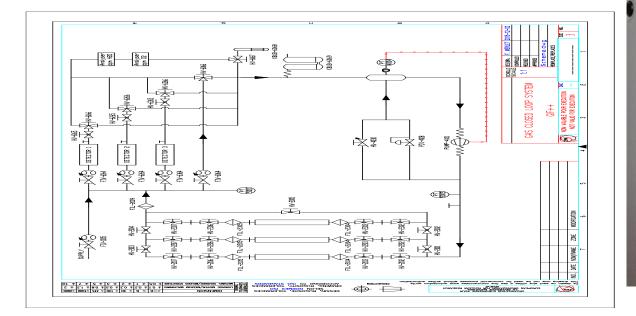
New Gas Distribution

Construction and operation of large GRPC need some improvements with respect to the present scenario. **Gas distribution** : new scheme is proposed


Cassette conception to ensure good contact between the detector and electronics is to be improved

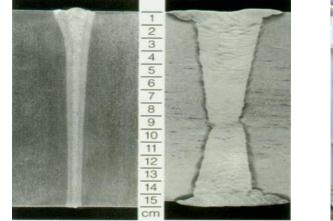
Construction of Large RPC

First 2x1 m² RPC chamber was successfully built with a new gas circulation system



2019/3/12

Recycling Gas System


- Successfully tested recycling gas system.
- A reduction of gas consumption by a factor up to 7 was achieved on a subset of the prototype.

Mechanical Structure

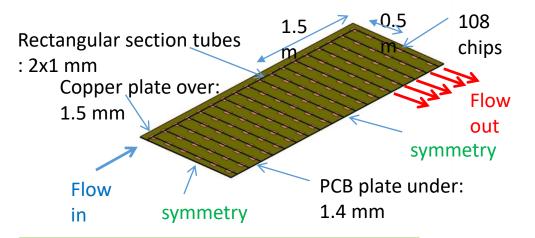

Improvement on the present system is being made by using **Electron Beam Welding** rather than bolts to reduce the deformation and the spacers thickness.

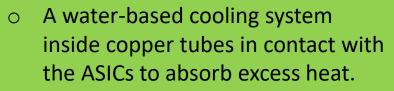
Industrial production of flat large absorber plates (3 m X 1 m) by roller leveling process

Major Challenges

- CEPC bunch spacing is 690ns/210ns/25ns for H/W/Z) → operating at continuous mode
- High granularity for SDHCAL → ~66M channels
- Possible solutions:
 - > Active cooling
 - > To reduce electronic channels

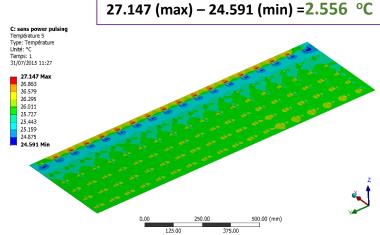
Estimated HCAL Channels


 - HCAL Barrel, R_{in} = 2.3m, R_{out} = 3.34m, length = 2.67*2=5.34m, N_{layer}=40 Area of HCAL barrel = 2*PI*[(R_{in}+R_{out})/2]*L*N_{layer} = 3782 m²
 - HCAL Endcap (2), R_{in} = 0.35m, R_{out} = 3.34m, N_{layer}=40 Area of HCAL endcap = 2*PI*(R_{out}*R_{out} - R_{in}*R_{in})*N_{layer} = 2772 m²


Cell Size \ channels	HCAL Barrel	HCAL Endcap	Channels (N _{ch})	Power AHCAL	Power SDHCAL
1cm x 1cm	37.82M	27.72M	65.5M		110 kW
2cm x 2cm	9.455M	6.93M	16.4M		52 kW
3cm x 3cm	4.2M	3.08M	7.3M	110 kW	43 kW
4cm x 4cm	2.36M	1.73M	4.1M	88 kW	
5cm x 5cm	1.51M	1.11M	2.6M	77 kW	

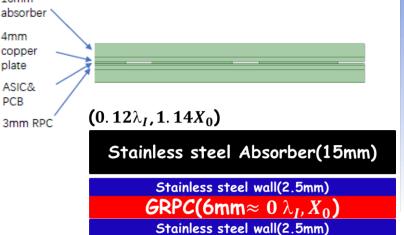
Power Consumption (rough estimation): AHCAL: 7mW/ch * N_{ch3} + 9W/DIF/m² * 6554 (59kW) SDHCAL: 1mW/ch * N_{ch1} + 5.4W/DIF/m² * 6554 (35.4kW)

Active Cooling

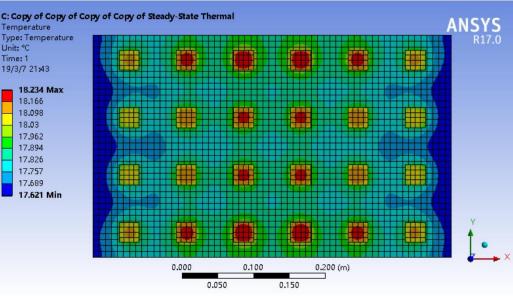

Cooling may become necessary if it is operating at continuous mode (CEPC)

• Temperature distribution in an active layer of the SDHCAL.

Water cooling : h = 10000 W/m²/k Thermal load : 90 mW/chip

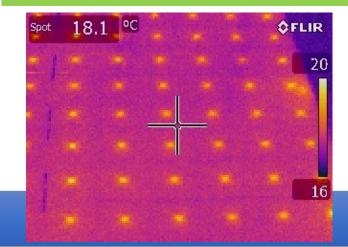

- To simulate temperature distribution in an active layer
- To simulate temperature distribution for multilayer SDHCAL
- optimize tube size and geometry
- **o** optimize water flow rate and cooling capacity

2019/3/12


Simulation of Active Cooling

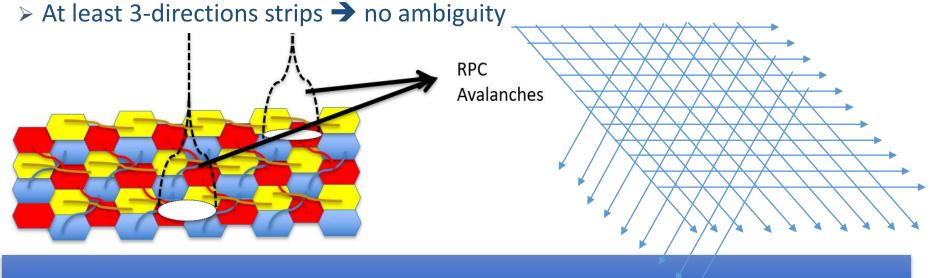
18.03

ANSYS Simulation of RPC+PCB Temperature Type: Temperature With copper plate & water tubes Unit: °C Time: 1 19/3/7 21:43 10mm 18.234 Max absorber 18.166



In Progress

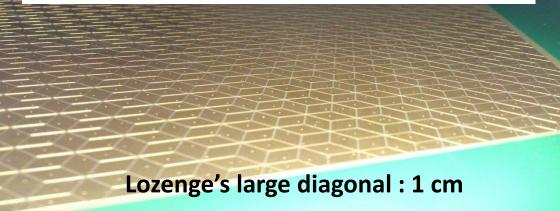
Temperature test of RPC+PCB



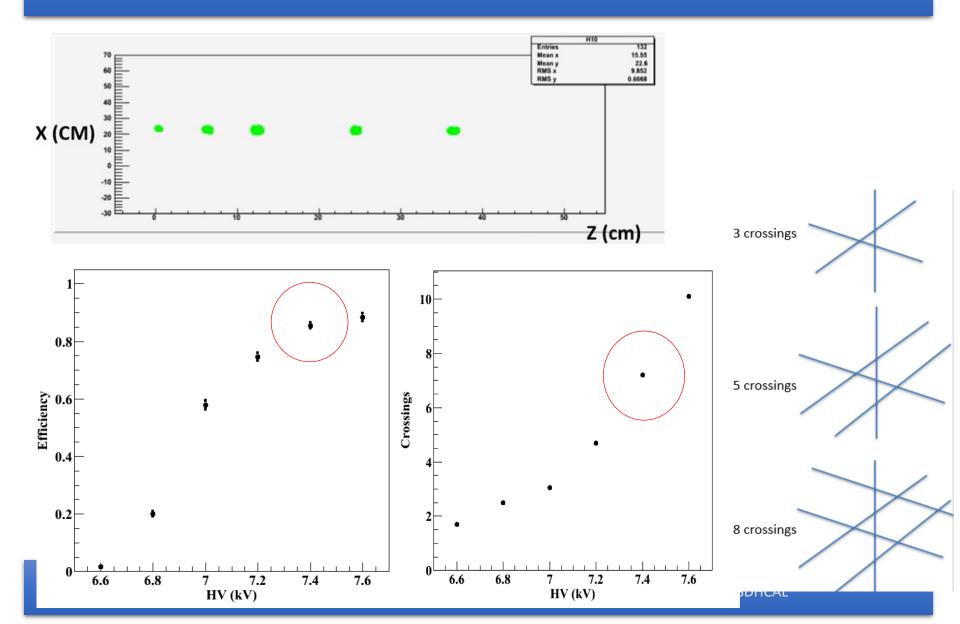
New PCB Design: reduce channels

- SDHCAL for CEPC is ~65M channels, only 2-5K will be fired for each collision, most of channels are idle almost all of the time.
- Reducing no. of cells will lead to less granularity -> bad PFA

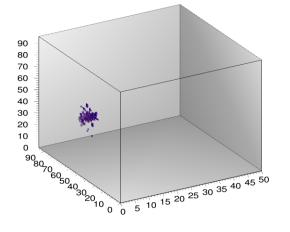
Solution (Imad Laktineh @IPNL):

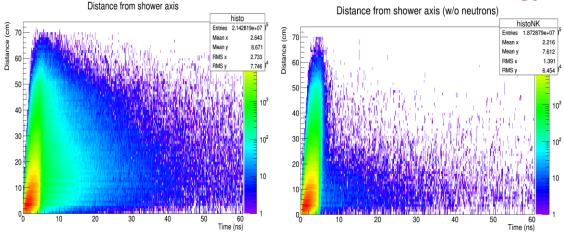

The principle: charge is shared among several cells. The cells are interconnected in a smart way so that one can identify the position of the impinging particle by identifyingfired strips and find hit as crossing points.

New PCB Design


lozenges structure and 3 directions.

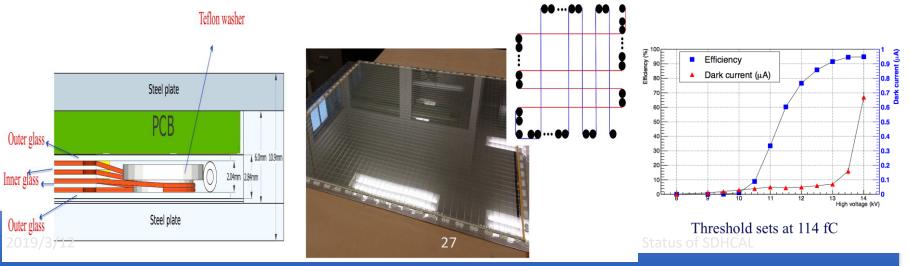
Setup with 5 detectors equipped with new PCB

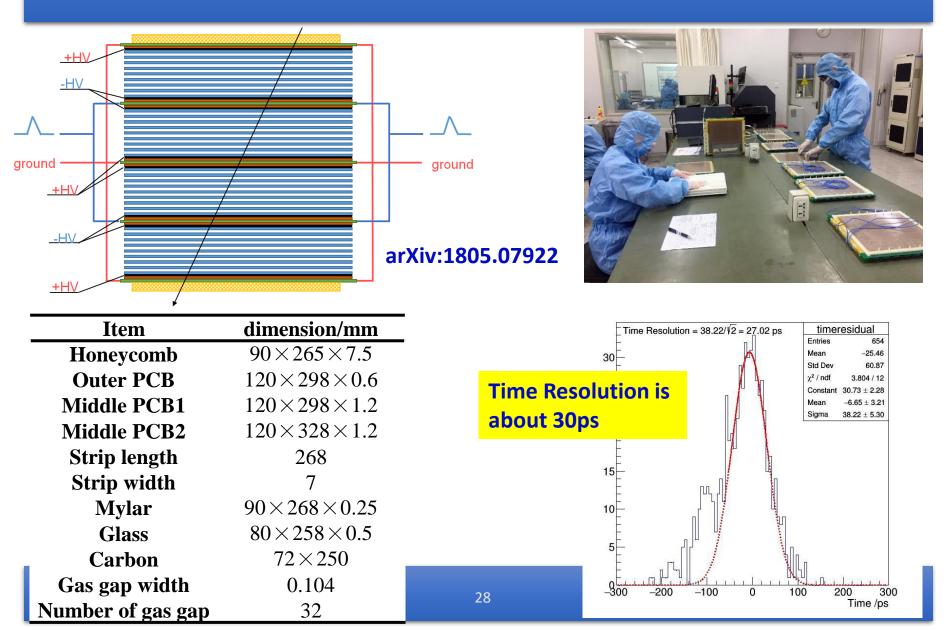

Status of SDHCAL


New PCB Design

Better Timing: MRPC

Timing could be an important factor to separate showers and better reconstruct their energy




In Progress

Multi-gap RPC are excellent fast timing detectors

Several MRPC were designed and built . Excellent efficiency when tested with HARDROC ASICs. **Next step use PETIROC (< 20 ps time jitters)** to single out neutron contributions.

MRPC designed by Tsinghua U.

Cost Estimation: SDHCAL

 - HCAL Barrel, R_{in} = 2.3m, R_{out} = 3.34m, length = 2.67*2=5.34m, N_{layer}=40 Area of HCAL barrel = 2*PI*[(R_{in}+R_{out})/2]*L*N_{layer} = 3782 m²
 - HCAL Endcap (2), R_{in} = 0.35m, R_{out} = 3.34m, N_{layer}=40 Area of HCAL endcap = 2*PI*(R_{out}*R_{out} - R_{in}*R_{in})*N_{layer} = 2772 m²

Parts	Unit Price (RMB)	Quantity	Total (RMB)
Glass	$150 \ / \ m^2$	2	300
Resistive Paint	1 / g	100	100
Frame	10 / m	4	40
Spacers	1	81	81
Spacer Glue	3.3 / g	30	100
Gas Connector	20	2	40
HV contacts	80 / m	0.1	8
HV connectors	50	2	100
Total cost of $1m^2$ GRPC			769

CEPC SDHCAL: 6550 m² Unit Cost: 40K RMB/m² Total Cost: 262M RMB

Parts	Unit Price (Euro)	Quantity	Total(Euro)
Cassette plates	8 / kg	50	400
Plate machining	200	1	200
Cassette walls	$8 \ / \ kg$	0.8	6.4
Mylar foils	$15 \ / \ m^2$	2	30
Silicone glue	$0.3 \ / \ { m ml}$	60	18
Bolts M2	0.02	60	1.2
Total cost of $1m^2$ cassette			655.6
Readout Electronics	Unit Price (Euro)	Quantity	Total (Euro)
ASIC (64 channels)	11.5	144 (9216)	1656
ASU:PCB (8-layer)	300	6	1800
DIF (detector interface DAQ card)	285	3	855
ASU-ASU connector	11	6	66
DIF-ASU	40	3	120
Total cost for readout electronics			4497

Summary and Conclusion

- SDHCAL (since 2011) is the first technological and still the unique complete prototype built for future experiments.
- Results of beam tests validate the concept. Many results are obtained.
- There is still a place for improvement by using genuine techniques (MVA, ...)
- New features such as PCB design, timing and cooling will play important role in future colliders calorimetry R&D.

Many thanks for great efforts from CALICE SDHCAL working group !

Backup Slides

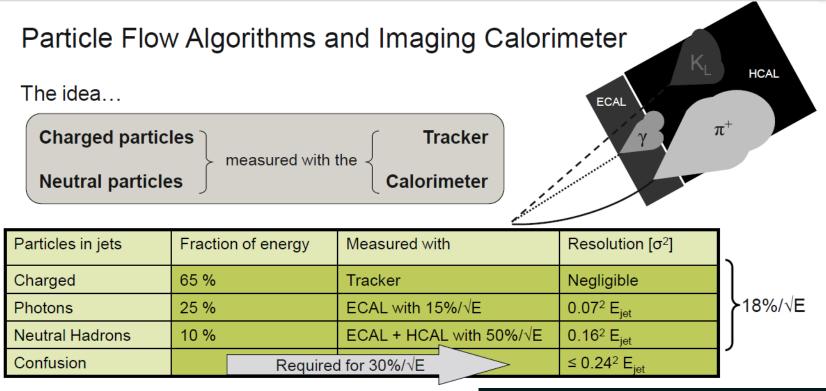
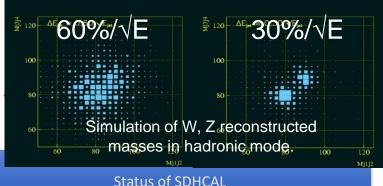
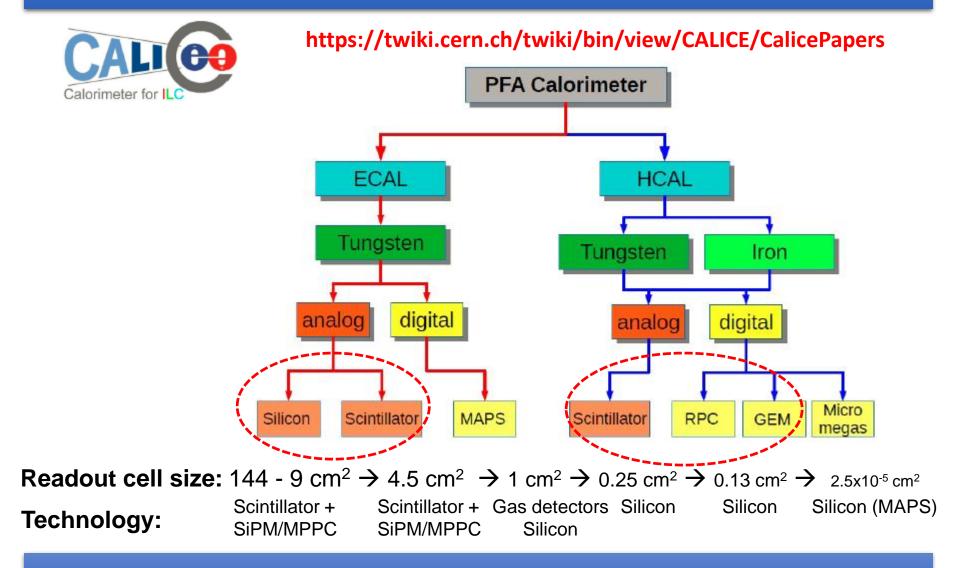

Material	$\lambda_I(\text{cm})$	$X_0(\mathrm{cm})$	λ_I/X_0
Fe	16.77	1.76	9.5
Pb	17.09	0.56	30.52
W	9.95	0.35	28.4

Table 1. Radiation and nuclear interaction lengths for Fe, Pb and W

	Requirement	MRPC	Typical	Analysis	Typical
			electronics	method	experiment
1 st TOF	Time resolution<100ps	Gas gap:200-	NINOs	TOT slewing	RHIC-STAR
	Rate<100Hz/cm ²	300 µm	+HPTDC	correction	LHC-ALICE
		Electrode: float			
		glass			
2 st TOF	Time resolution<100ps	Gas gap:200-	PADI +GET4	TOT slewing	FAIR-CBM
	Rate~30kHz/cm ²	300 µm		correction	
		Electrode: low			
		resistive glass			
3 st TOF	Time resolution<20ps	Gas gap:100-	Fast amplifier	TOT slewing	JLab-SoLID
	Rate~20kHz/cm ²	150 μm	+ pulse shape	correction	
		Electrode: low	sampling	Deep learning	
		resistive glass		technology	


Table 2. Main technology of three generation of MRPC TOF system

PFA and Imaging Calorimeter



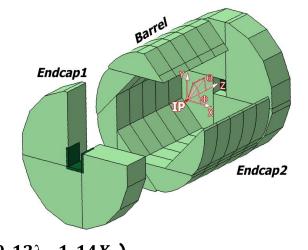
Requirements for detector system

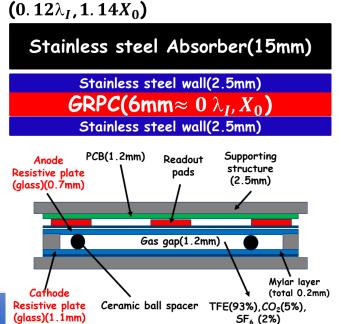
- \rightarrow Need excellent tracker and high B field
- \rightarrow Large R_I of calorimeter
- → Calorimeter inside coil
- \rightarrow Calorimeter as dense as possible (short X₀, λ_1).
- → Calorimeter with extremely fine segmentation

CALICE: Imaging Calorimeter

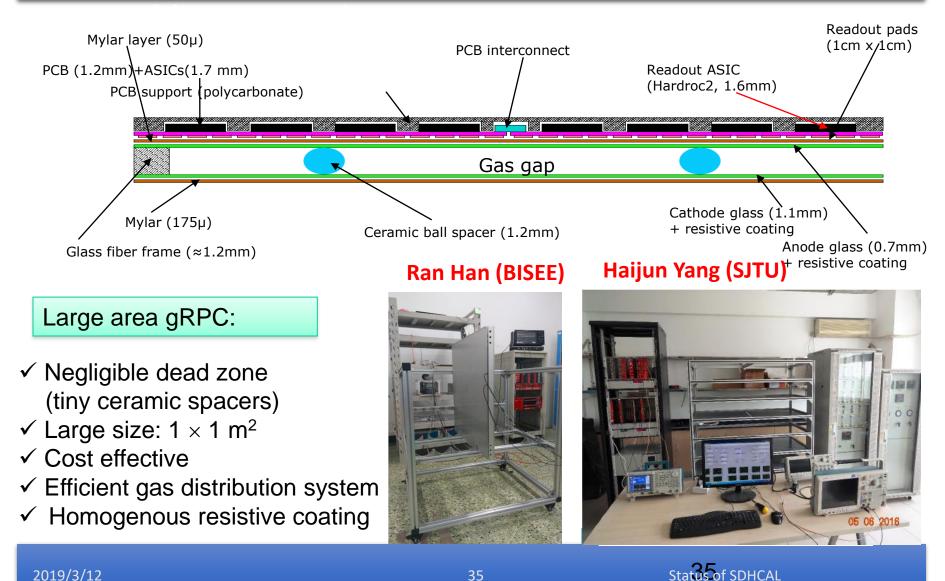
2019/3/12

SDHCAL Prototype


The SDHCAL-GRPC is one of the two HCAL options based on PFA and proposed for ILD. Modules are made of 48 RPC chambers (6λ_I), equipped with semi-digital, power-pulsed electronics readout and placed in self-supporting mechanical structure (stainless steel) to serve as absorber.


Proposed structure for SDHCAL:

- Very compact with negligible dead zones
- Eliminates projective cracks
- Minimizes barrel and endcap separation


Challenges:

- Homogeneity for large surfaces
- Thickness of only a few mm
- PCB cell size of 1cm X 1cm
- Services from one side
- Embedded power-cycled electronics
- Self-supporting mechanical structure

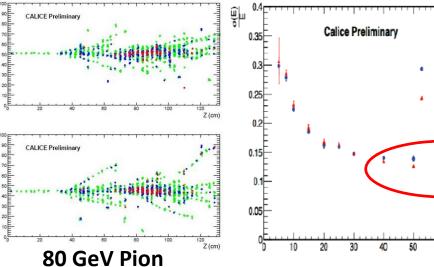
Schematic of RPC

2019/3/12

DHCAL with RPC

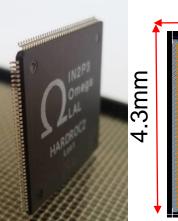
Prototypes of DHCAL based on RPC

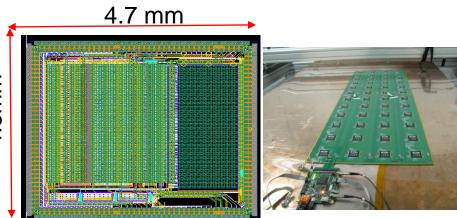
- ANL (J. Repond, L. Xia et.al.)
 1m³, 1 threshold, TB at CERN/Fermilab
- IPNL (I. Laktineh et.al.)


1m³, 3 thresholds, TB at CERN since 2012

CAI multi-threshold

80 9 E_{tean} (GeV)

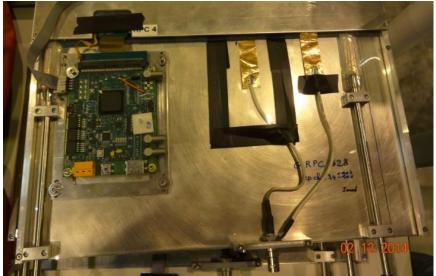




Readout Electronics for RPC Imad Laktineh (IPNL)

ASICs : HARDROC2

64 channels Trigger less mode Memory depth : 127 events **3 thresholds** Range: 10 fC-15 pC 110fC, 5pC, 15pC Gain correction → uniformity

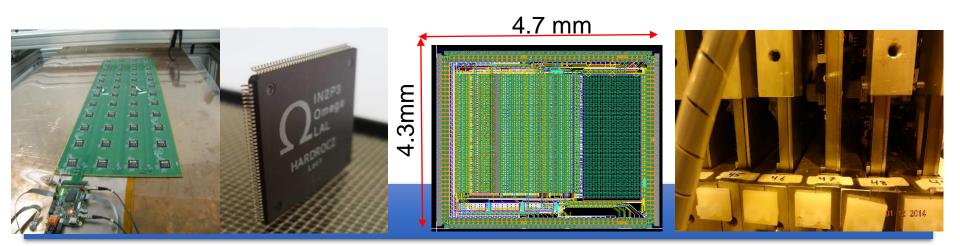


Printed Circuit Boards (PCB) were designed to reduce the cross-talk with 8-layer structure and buried vias.

Tiny connectors were used to connect the PCB two by two so the 24X2 ASICs are daisy-chained. $1 \times 1m^2$ has 6 PCBs and 9216 pads.

DAQ board (DIF) was developed to transmit fast commands and data to/from ASICs.

Electronics channels / m²

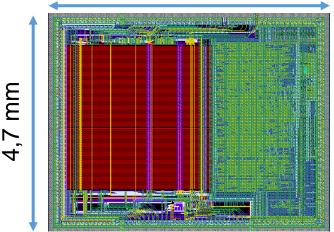

(0.12 λ_I , 1.14 X_0)

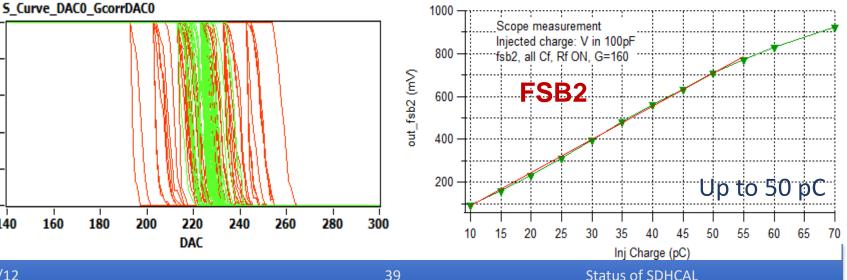
Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) **GRPC(6mm** $\approx 0 \lambda_I, X_0$) Stainless steel wall(2.5mm)

SDHCAL for CEPC has 40 layers

- → Each layer: 3 mm RPC
 - + 1.2 ~ 1.4 mm PCB
 - + 1.6 mm ASIC (Hardroc)
- → 20mm steel absorber (2.5+2.5+15mm)
- → 6 PCB to cover 1m² RPC
- → Each PCB size: 31 cm * 50cm ~ 1536 channels
- → Each ASIC chip (Hardroc) has 64 channels, size 4.3mm*4.7mm
- → Each PCB with 1536-channel needs 24 ASIC chips (4*6)
- → Power: 1.4mW/ch * 64 ch = 90 mW/Chip
- Power: 1.4mW/ch * 6*24*64 ch = 1.4mW/ch*9216ch/m² = 13W/m²


New Electronics: ASIC


HARDROCR3 main features:

- Independent channels
- Zero suppress
- Extended dynamic range (up to 50 pC)
- I2C link with triple voting for slow control parameters
- packaging in QFP208, die size ~30 mm²
- Consumption increase (internal PLL, I2C)

H3B TESTED : 786, Yield : 83.3 %

2019/3/12

100

80·

60

40

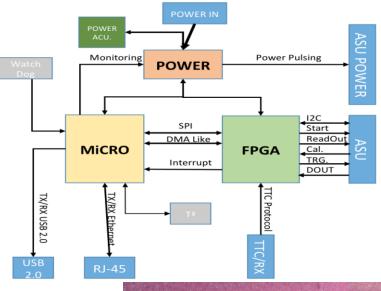
20

140

[%]

ASU (Active Sensor Unit)

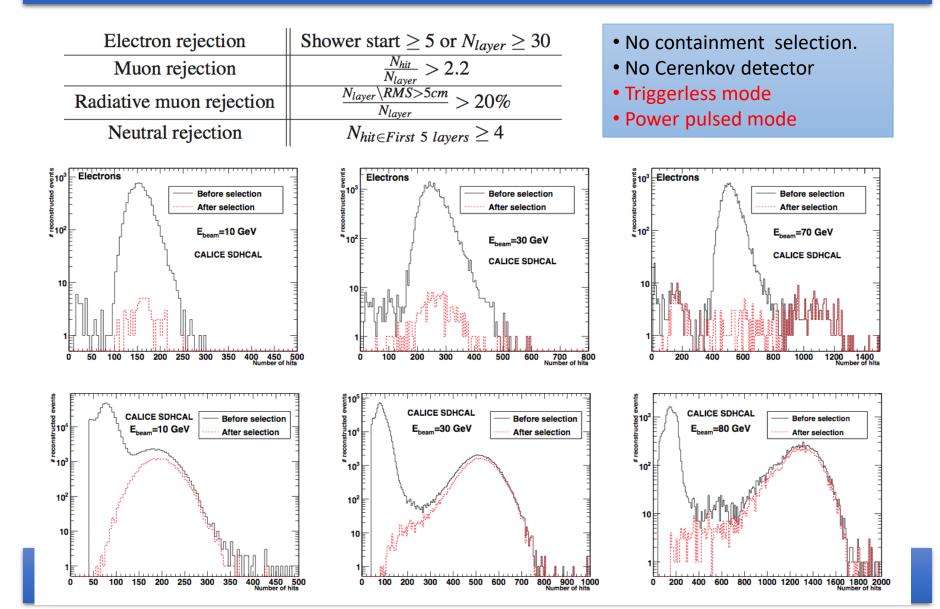
One important challenge is to build a PCB up to 1m length with good planarity to have a homogeneous contact of pads with RPCs in order to guarantee an uniform response along all the detector. After investigation in some companies, *1x0.33 m2 with 13 layer ASUs* have been built.



The ASU-ASU (= ASU-DIF) connections also produced

New Electronics: DIF

DIF sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing


- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- HR3 slow control through I2C bus (12 IC2 buses). Keeps also 2 of the old slow control buses as backup & redundancy.
- Data transmission to/from DAQ by Ethernet
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors

(vs 8.6 W in previous DIF)

- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

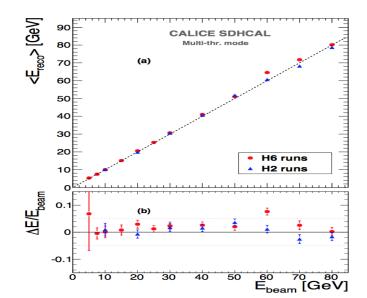
Event Selection of Hadron Beams

Energy Reconstruction (χ^2)

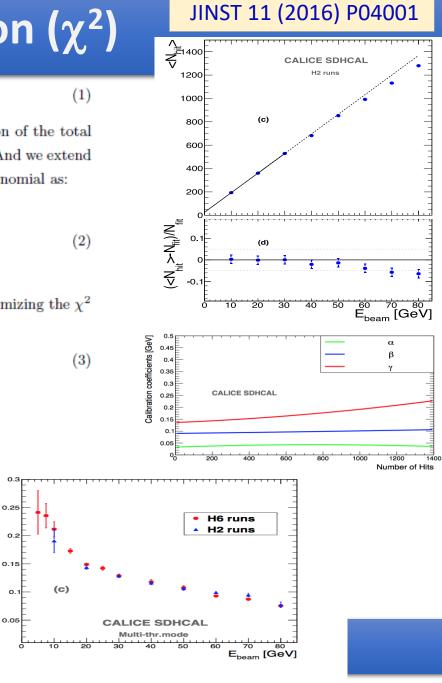
$$E_{rec} = \alpha \times N_1 + \beta \times N_2 + \gamma \times N_3 \tag{1}$$

where α , β and γ are three weight parameters treated as a function of the total hits counted with notation N_{total} , in which $N_{total} = N_1 + N_2 + N_3$. And we extend relations between these parameters and N_{total} to second order polynomial as:

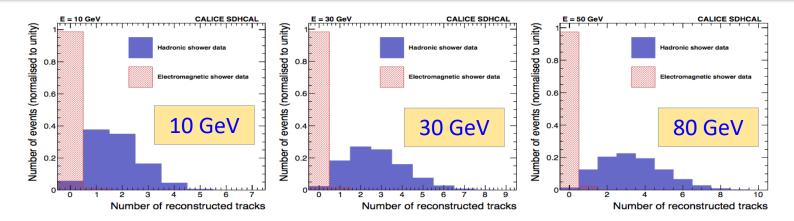
$$\alpha = \alpha_1 + \alpha_2 \times N_{total} + \alpha_3 \times N_{total}^2$$

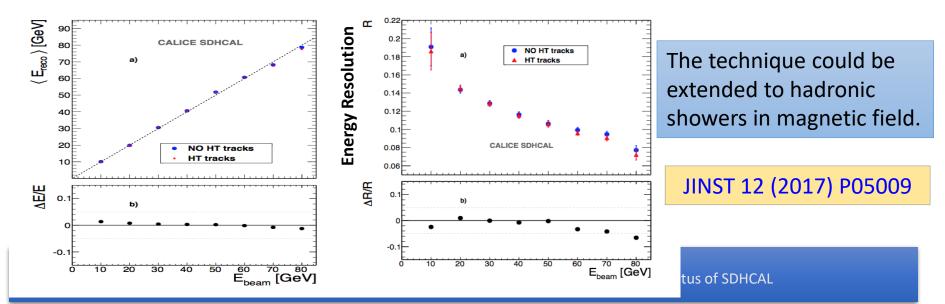

$$\beta = \beta_1 + \beta_2 \times N_{total} + \beta_3 \times N_{total}^2$$

$$\gamma = \gamma_1 + \gamma_2 \times N_{total} + \gamma_3 \times N_{total}^2$$
(2)


We can obtain nine parameters from the simulated samples by minimizing the χ^2 function, which reads:

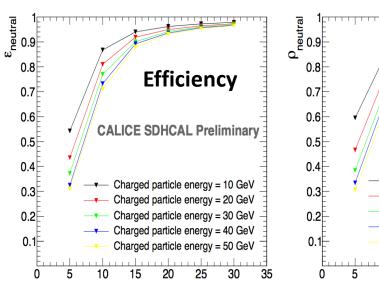
$$\chi^{2} = \sum_{i=1}^{N} \frac{(E_{beam}^{i} - E_{rec}^{i})^{2}}{\sigma_{i}^{2}} \qquad (3)$$


σ_{reco}/<E_{reco}>

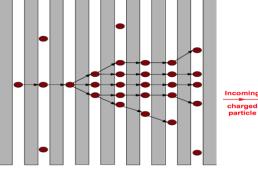

2019

Separation of electron/hadron

It improves on the **energy reconstruction** by dealing with the hits belonging to the track segments independently of their threshold.


Arbor PFA

SDHCAL high granularity is desirable


It helps to optimize the connection of hits belonging to the same shower by using the topology and energy information

ArborPFA algorithm:

It connects hits and clusters using distance and orientation information, then correct tracker momentum information.

Distance between showers [cm]

Purity

CALICE SDHCAL Preliminary

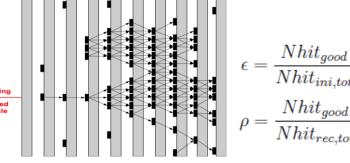
Charged particle energy = 10 GeV

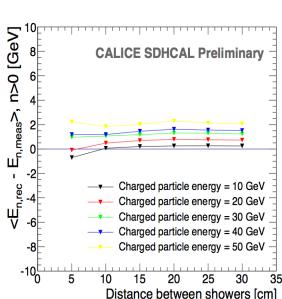
Charged particle energy = 20 GeV

Charged particle energy = 30 GeV

Charged particle energy = 40 GeV

Charged particle energy = 50 GeV


Distance between showers [cm]


25

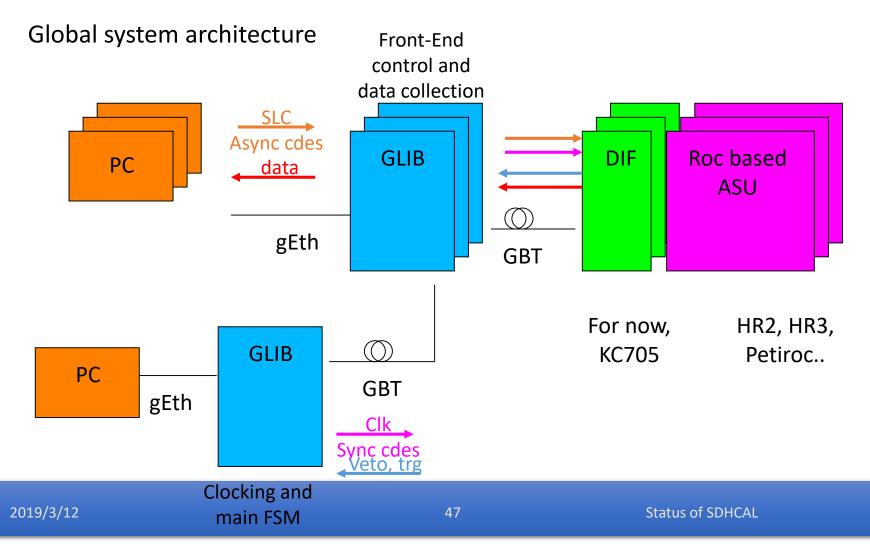
20

10

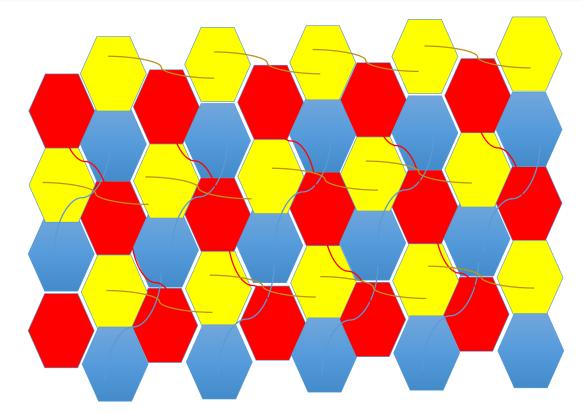
15

CALICE note CAN054

Pion eff. vs Backgrounds eff.


- For same Pion efficiency, we compare electron & muon efficiencies from "simple cut" and "BDT" methods.
- BDT has modest improvement for electron suppression and significant improvement for muon suppression.

Energy	simple cut			BDT		
	eff_{pion}	$eff_{electron}$	eff_{muon}	eff_{pion}	$eff_{electron}$	eff_{muon}
10 GeV	55.7%	0.0%	0.1%	55.7%	0.0%	0.0%
20 GeV	70.5%	0.0%	0.3%	70.5%	0.0%	0.0%
30 GeV	80.9%	0.0%	0.6%	80.9%	0.0%	0.1%
40GeV	87.2%	0.1%	0.6%	87.2%	0.0%	0.1%
50 GeV	90.6%	0.1%	0.9%	90.6%	0.1%	0.1%
60GeV	93.0%	0.2%	1.0%	93.0%	0.2%	0.2%
70GeV	94.7%	0.3%	1.2%	94.7%	0.2%	0.2%
80GeV	95.7%	0.3%	1.1%	95.7%	0.2%	0.2%
ICE note CAN059						


CAL

DAQ System

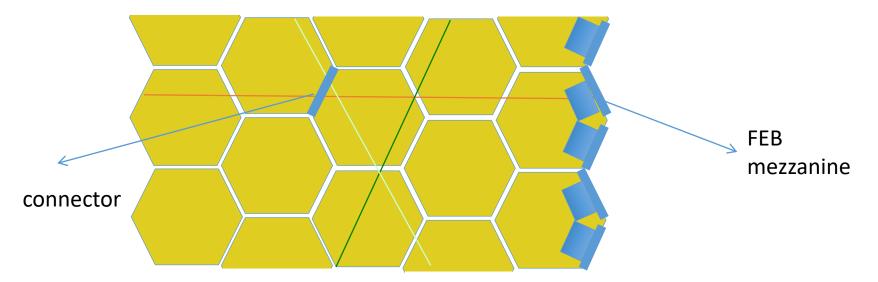
Implementation of a GBT-based communication system for ROC chips. This aims to reach higher performance using robust and well maintained system in the future

New PCB Design

Several shapes of pixels/pads can be used: triangles, lozenges, pentagons, hexagons the most convenient is the triangular shape

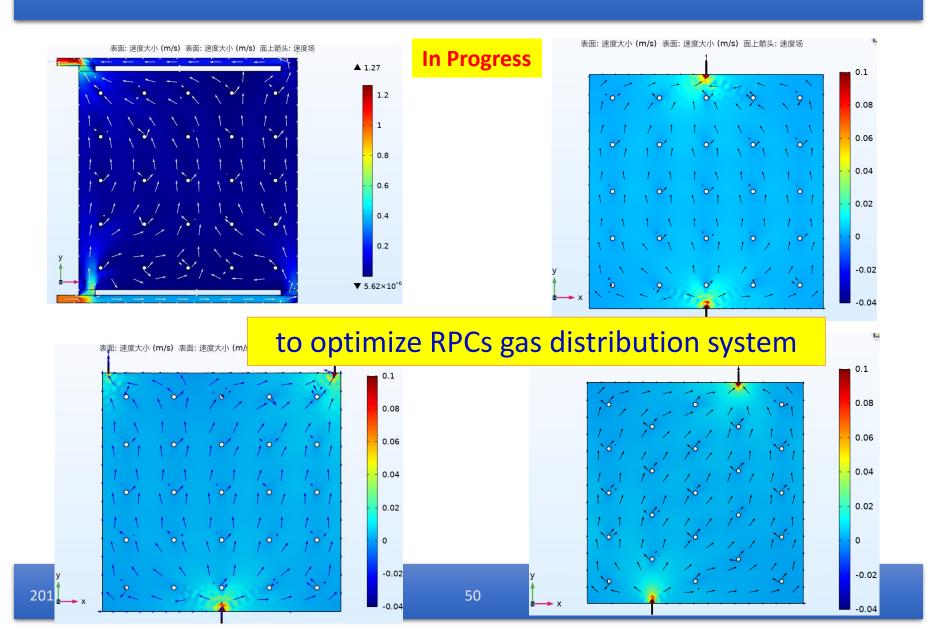
□ The pixel/pad size should be a slightly smaller to charge extension to feed at least two

□ Having 3 or more directions allow one to eliminate ambiguities (ghost particles)


Ongoing work

How to build larger PCB?

Using PCB-unit, A PCB-unit will be equipped with connectors allowing:


Either to connect two PCBs

Or to plug a mezzanine that host the ASICs and the DIF's FPGA as well as Ethernet or wireless communication protocols

The connector should have a low inductance. In this case long strips of several meters (maybe tens of meters) could be used as far as the signal reduction is acceptable. This will represent a huge reduction of electronic channels.

More Gas Flow Simulation

