高能所 CEPC 创新项目子课题 **顶点探测器 — CMOS像素探测器研究** 朱宏博、欧阳群

预期指标

- 高能物理研究所创新基金、核探测与核电子学国家重点实验 室支持,首次开展CMOS硅像素探测器关键技术预研
- 熟悉主流工艺,掌握像素单元优化设计及性能研究方法

	预研指标	CEPC最终指标
位置分辨率(微米)	10	3
探测效率	99%	优于99%
读出时间(微秒)	100	≤20
探测器功耗(mW/cm ²)	150	≤50
抗辐照 (年均值)	未要求	1 MRad 及2×10 ¹² n _{eq} /cm ² (H mode)

课题总体进展、完成情况

- Pixel sensor设计
 - 1、高阻晶圆 (wafer) + TowerJazz CIS 0.18 µm process
 - TCAD仿真优化设计像素灵敏区
 - 优化电荷收集幅度、时间和效率、以及抗辐照特性
 - 优化像素内电子学(内置甄别器、基于电流型比较器的数字存储)及异步读出 (data driven + AERD)架构等,降低功耗,提高读出速度。(科技部重点专项 MOST1)
 - 2、流片
 - 2015.11 JadePix1
 - 2017.05 JadePix2 (科技部重点专项MOST1)
 - 3、NIMA文章、国际会议(ICHEP2018、PIXEL2018等)报告
- 性能研究
 - 1、漏电流、耗尽电压、衬底及像素间电容等
 - 2、放射源测试响应曲线
 - 3、束流试验
 - 空间分辨率
 - 探测效率
 - 4、辐照特性~额外

JadePix 1 设计

- 优化电极设计 (像素尺寸33×33 μm² 及16×16 μm²)
 - 减小面积可以降低电容(C),降低噪声,提高信噪比(S/N);提高
 Q/C(S/N)以降低模拟电路功耗
 - 增大面积可以提高电荷收集效率,提高抗辐照性能
 - AC耦合高正向偏压,提高信号幅度
- •参考ALICE ITS 升级研究结果,可优化参数包括:
 - 收集极(二极管)面积、外围保护环(P阱)间距等
- 经典2T/3T结构 · Rolling Shutter (卷帘窗)读出方式

 芯片输出的模拟信号经过运放(子板/打线板-子板)、ADC 数字化(母板),然后在FPGA内打包数据通过PCIe端口传给 PC机。数据获取(DAQ)软件支持多线程,在线数据筛选, 实时显示芯片响应(事例/计数)。

⁵⁵Fe 标定增益

- •实验室内采用⁵⁵Fe放射源标定像素增益
 - 假设条件:X-光击中电极后能量完全转换(致密物质)、快速 收集(周围高电场)完全吸收

• $k_{\alpha}k_{\beta}$ 峰清晰可见,可以标定像素增益。

电荷收集

Sr-90测试

• 电极几何对电荷收集的影响

Sector	Seed Charge [e ⁻]	Cluster Charge [e-]	CCE	S/N	
A1	1498	3893	38.48%	237	_
A2	1624	3973	40.87%	229	
A3	1673	3784	44.22%	180	电极优化指标:
A4	1391	3822	36.39%	234	Q/C~S/N,提高Q/C,
A7	1361	3985	34.15%	220	降低惧拟切耗

束流测试

像素尺寸33×33及16×16的位置分辨率分别为4.8微米和3.5微米。
 通过改进探测器准直及簇团重建算法可以进一步提高。小像素分辨率接近束流望远镜分辨率,测量精度将不足。未来标定更高精度探测器,CERN束流更为合适。

探测效率

因为与触发逻辑器时间同步等问题,数据获取系统采数效率有明显损失,不能准确估计探测效率。未来测试应使用带有FE-I4的束流望远镜,消除时间匹配问题。

• 像素阵列B单个触发采集时间更长,效率损失相对减小

测试结果总结

• 测试结果与项目预期指标比照

	预研指标	测试结果(A/B)
位置分辨率(微米)	10	4.8/3.5
探测效率	99%	60%/75%(未修正)
读出时间(微秒)	100	24/48
探测器功耗(mW/cm ²)	150	51 (主要为模拟功耗)
抗辐照 (年均值)	未要求	

Backup

Developed CMOS Pixel Sensor prototypes

Prototype	Pixel size (µm²)	Collection diode bias (V)	In-pixel circuit	Matrix size	R/O architecture	Status
JadePix1	33 × 33 16 × 16	< 1.8	SF/amplifer	96 × 160 192 × 128	Rolling shutter	In measurement
JadePix2	22 × 22	< 10 V	amp., discriminator	128 × 64	Rolling shutter	In measurement
MIC4	25 × 25	reverse bias	amp., discriminator	112 × 96	Asynchronous	In measurement

All prototypes in TowerJazz 180 nm process

Performance After Irradiation

- Samples sent to a pulsed neutron reactors and irradiated to fluences of 10¹², 5x10¹², and 10¹³ 1 MeV n_{eq}/cm²
- Larger diode (A3 >A1) more radiation hard as expected

Performance After Irradiation

 Charge collection efficiency decreases but noise increases as the neutron fluence goes higher

顶点探测器性能要求及挑战

- 重味夸克高效率标记,要求CEPC探测器的Impact parameter分辨 率优于 $\sigma_m = 5 \oplus 10 / p \cdot \sin^{3/2} \theta \mu m$
- 对顶点探测器指标提出严峻挑战
 - 空间分辨率优于 σ_{SP} ~ 3µm → 小像素尺寸, ~15µm
 - 单层总物质量 ≤ 0.15% X₀
 - →等效硅厚度≤ 150µm,包括sensor、cables、支撑结构 Senor功耗<50 mW/cm²,风冷技术限制
 - 抗辐照能力:~100 kRad/年 (总剂量),10¹¹n_{eq}/(cm² year) (非电离能损)
 - 低探测器占有率 <1% → 快读出时间, 20µs或更快

与ILC探测器的区别:不能采用Power-pulsing工作模式,低功耗是最主要的设计难点。

预期指标及年度计划

· 拟研制的CMOS硅像素探测器主要指标:

	项目指标	CEPC最终指标
空间分辨率 (µm)	10	3
探测效率	99%	99%
读出时间 (µs)	100	20
探测器功耗 (mW/cm ²)	150	50
抗辐照能力	暂不考虑	~100 <u>kRad</u> /年、 10 ¹¹ n _{eq} /cm²

• 年度计划:

- ① 2014-2015: 选定CMOS工艺,传感器TCAD器件仿真;提出低功耗读出 电子学构架方案及初步设计;组织技术评估。
- ② 2015-2016:提交首次MPW流片;数据读出方案及设计;实验室基本性能测试;完成高精度束流望远镜。
- ③ 2016-2017:根据首次流片测试结果调整、改进灵敏区设计,基本实现 主要设计指标。再次流片并取得束流测试结果。