# Variability Probes of AGN Accretion Disc Temperature Profiles

1: STORM on NGC 5548: Continuum reverberation mapping  $\tau(\lambda) \Rightarrow T(R)$  is steeper than expected  $T \sim R^{-1}$   $\bigotimes$ Also, disc surface brightness is lower than expected.  $\bigotimes$ 

Is our simplest (thin, steady-state blackbody) disc model dead?

- 2: SDSS Stripe 82 : u g r i z lightcurves for 9258 variable quasars SMC-like dust extinction of  $f_v \sim v^{1/3}$  fits  $\bigcirc$
- 3: SDSS-RM: Composite Mean and RMS spectra for 849 quasars The RMS spectrum fits  $f_v \sim v^{1/3}$   $\bigcirc$

Keith Horne, SUPA St Andrews.

2019 Sep 21, Guilin

# **Steady Thin Blackbody Discs**

Testable predictions of a simple and elegant accretion disc theory:

(Sakura & Sunyaev 1973)





#### **Continuum Echo Mapping** T(r) profiles of AGN Accretion Discs

- Measure the time delay spectrum  $\tau$  (  $\lambda$  )
- To find the disk temperature profile T (r)

Test disc models 
$$T(r) = \left(\frac{3 G M}{8 \pi \sigma}\right)$$

$$\stackrel{\tau}{\longrightarrow} \frac{\tau \propto \lambda^{4/3}}{f_{\nu} \propto \nu^{1/3}}$$

1/4

 $\dot{M}$ 

 $r^3$ 

Distances for Cosmology?

Lamp post model : Disc irradiated by a point source just above the disc centre. (EUV+X-ray corona)

## Accretion Disk Reverberations Assumptions:



#### **STORM: UV, optical lightcurves**

HST: 1/day SWIFT: 2 /day

Ground-based > 600 epochs





120 days

4

Edelson, et al. 2015

## Lightcurves $f(\lambda,t) => CCF Lags \tau(\lambda)$

UV (1150 A)





UV lightcurves (HST, Swift) Optical lightcurves (LCO+LT+... many telescopes) Cross-correlate to find time delay vs wavelength.

Fausnaugh, et al. 2016

#### **Blackbody Disc Delay Maps**



#### **CREAM : MCMC fit to all 19 Lightcurves**

Starkey, et al. 2017

 $F(t,\lambda) = \bar{F}(\lambda) + \Delta F(\lambda) \int \Psi(\tau|\lambda) X(t-\tau) d\tau$ 









Starkey, et al. 2017



# Standard Disc Model Fails 🛞

![](_page_11_Figure_1.jpeg)

How does the standard disc model fail?

Disk is too hot (or large). T( R ) is too steep. Surface brightness is too dim.

Starkey, et al. 2017

Disc  $f_v(\lambda)$  is fainter than expected (for L/L<sub>Edd</sub>=0.1)

![](_page_11_Figure_6.jpeg)

#### Why does the disc model fail ?

Dust ? (affects flux but not delay) Wrong  $M_{\rm BH}$ ? (higher / lower L<sub>edd</sub>) Diffuse continuum from BLR ? Patchy irradiation (shadows) ? Tilted inner disc ?

# Warps/Waves/Ripples on the Disc ?

- Wave crests see the lamp-post.
- Shadows fill the troughs.
- Steepens T( R ) profile, lowers surface
  brightness.

Starkey, Lin, Horne, in prep

![](_page_12_Figure_5.jpeg)

Horne, in prep

- Tilted inner disc (aligning with BH spin).
- Anisotropic irradiation, self-irradiation.
- Precession (rotating structure) observable?

![](_page_12_Picture_10.jpeg)

*Nealon, Price, Nixon* 2015 MNRAS 3d SPH simulations

![](_page_12_Figure_12.jpeg)

#### HST Spectra of NGC 5548 "Barber-Pole" Residuals

![](_page_13_Figure_1.jpeg)

# Variability Probes of AGN Accretion Disc Temperature Profiles

1: STORM on NGC 5548: Continuum reverberation mapping  $\tau(\lambda) \Rightarrow T(R)$  is steeper than expected  $T \sim R^{-1}$   $\bigotimes$ Also, disc surface brightness is lower than expected.  $\bigotimes$ 

Is our simplest (thin, steady-state blackbody) disc model dead?

- 2: SDSS Stripe 82 : u g r i z lightcurves for 9258 variable quasars SMC-like dust extinction of  $f_v \sim v^{1/3}$  fits  $\odot$ 
  - 3: SDSS-RM: Composite Mean and RMS spectra for 849 quasars The RMS spectrum fits  $f_v \sim v^{1/3}$   $\bigcirc$

Keith Horne, SUPA St Andrews.

2019 Sep 21, Guilin

University of St Andrews

![](_page_15_Picture_1.jpeg)

Danmarks Grundforskningsfond Danish National Research Foundation

# John R. Weaver

directly probing the quasar **accretion disc** with multi-epoch photometry

![](_page_15_Picture_5.jpeg)

#### John R. Weaver

PhD Research Fellow DAWN The Cosmic Dawn Center Fellow, Royal Astronomical Society

> Niels Bohr Institute, University of Copenhagen @astroweave | .john.weaver.astro@gmail.com

with Keith Horne (St Andrews)

#### SDSS Stripe 82 Sample: (Macleod et al. 2012) 9258 Quasars with u g r i z lightcurves over ~10 yr

![](_page_16_Figure_1.jpeg)

Quasar Spectra are Redder than  $F_{\nu} \sim v^{1/3}$ .

#### Variations can isolate the Disc Spectrum

Decompose **u g r i z lightcurves** into mean and variations for **each** of the 9258 quasars in Stripe 82

![](_page_17_Figure_2.jpeg)

**B**(
$$\lambda$$
) = variable component spectrum = **accretion disc**?

Does the variable light have a  $v^{1/3}$  accretion disc spectrum?

# **Decomposition of ugriz Lightcurves**

![](_page_18_Figure_1.jpeg)

# The Disc and Galaxy Spectra

Separate **disc** and **galaxy** components

![](_page_19_Figure_2.jpeg)

### Variable Component Demographics

Variable quasar light is closer to  $v^{1/3}$ , but still too red.  $\otimes$ 

![](_page_20_Figure_2.jpeg)

# **Dust in the AGN or Host Galaxy ?**

Quasar disc spectra may be strongly affected by dust. **Determine minimum dust extinction** required to fit  $F_{\nu} \sim \nu^{1/3}$ for each of the 9258 quasars in Stripe 82 to constrain the best-fit dust law for this sample.

![](_page_21_Figure_2.jpeg)

IV - Gaskell AGN {Gaskell et al. 2004}

![](_page_21_Figure_4.jpeg)

### **Dust Extinction Corrections**

![](_page_22_Figure_1.jpeg)

### **Dust Demographics**

E(B-V) distributions for the 4 dust laws

![](_page_23_Figure_2.jpeg)

### **SMC-like Dust fits best**

![](_page_24_Figure_1.jpeg)

#### S

#### Quasar Disc spectra now centre on the $v^{1/3}$ slope $\odot$

**:C** 

![](_page_25_Figure_2.jpeg)

#### **9258 Dust-Corrected Disc "Spectra"** assuming an SMC-like attenuation curve

![](_page_26_Figure_1.jpeg)

## **Composite Disc "Spectrum"**

![](_page_27_Figure_1.jpeg)

# Variability Probes of AGN Accretion Disc Temperature Profiles

1: STORM on NGC 5548: Continuum reverberation mapping  $\tau(\lambda) \Rightarrow T(R)$  is steeper than expected  $T \sim R^{-1}$   $\cong$ Also, disc surface brightness is lower than expected.  $\cong$ 

Is our simplest (thin, steady-state blackbody) disc model dead?

2: SDSS Stripe 82 : u g r i z lightcurves for 9258 variable quasars SMC-like dust extinction of f<sub>v</sub> ~ v<sup>1/3</sup> fits ☺
 3: SDSS-RM: Composite Mean and RMS spectra for 849 quasars

The RMS spectrum fits  $f_v \sim v^{1/3}$   $\bigcirc$ 

Keith Horne, SUPA St Andrews.

2019 Sep 21, Guilin

#### **SDSS-RM Survey**

- PI: Yue Shen
- SDSS spectroscopic monitoring of 849 quasars (0.12<z<4.3) (plus ~100 comparison stars.)
- SDSS-III (2014, 32 epochs/6mo)
- SDSS-IV (2015-2019..., 12 epochs /6mo)
- Bok+CFHT photometric (g,i) monitoring.
- **Primary Goals:** Measure light travel time delays.
- Emission-line lag vs continuum => black hole masses
- Continuum lag vs wavelength => accretion disk T( r ) profiles.
- Pilot for SDSS-V => Black Hole Mapper

#### **PrepSpec Analysis : Fit Residuals**

![](_page_30_Figure_1.jpeg)

Shen et al. 2016  $f(\lambda, t) = p(t) (A(\lambda) + B(\lambda, t) + C(\lambda, t))$ 

#### **PrepSpec :** Mean and RMS spectra, Line and Continuum Lightcurves

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

#### **Composite Mean and RMS Spectra**

![](_page_32_Figure_1.jpeg)

#### **Composite Mean and RMS Spectra**

#### Variations isolate the Disc Spectrum:

#### Composite Mean Spectrum

#### Composite RMS Spectrum

 $T \propto r^{-3/4} \Longrightarrow f_{\nu} \propto \nu^{1/3}$ 

![](_page_33_Figure_4.jpeg)

Horne+ in prep.

# Variability Probes of AGN Accretion Disc Temperature Profiles

1: STORM on NGC 5548: Continuum reverberation mapping  $\tau(\lambda) \Rightarrow T(R)$  is steeper than expected  $T \sim R^{-1}$  Also, disc surface brightness is lower than expected.

Is our simplest (thin, steady-state blackbody) disc model dead?

- 2: SDSS Stripe 82 : u g r i z lightcurves for 9258 variable quasars SMC-like dust extinction of  $f_v \sim v^{1/3}$  fits  $\bigcirc$
- 3: SDSS-RM: Composite Mean and RMS spectra for 849 quasars The RMS spectrum fits  $f_v \sim v^{1/3}$   $\bigcirc$

Perhaps the disc model is not quite dead yet.

Keith Horne, SUPA St Andrews.

2019 Sep 21, Guilin

![](_page_35_Figure_0.jpeg)

#### Keith Horne, SUPA St Andrews

Guilin, 2019 Sep 21