Robotic Echo Mapping of 3c 120 Michael Hlabathe (U. Cape Town), et al.

Preliminary results in preparation for MNRAS.

MNRAS 000, 1-18 (2018)

Preprint 17 September 2019

Compiled using MNRAS IATEX style file v3.0

Reverberation Mapping of the Seyfert 1 Galaxy 3C 120

Michael S. Hlabathe^{1,2*}, David A. Starkey³, Keith Horne³, Encarni Romero-Colmenero^{2,4}, Steven M. Crawford⁵, Stefano Valenti^{6,7}, Hartmut Winkler⁸, Aaron J. Barth⁹, Christopher A. Onken¹⁰, David J. Sand¹¹, Tommaso Treu¹², Carolin Villforth¹³

Michael Hlabathe

Guilin 2019 Sep 20

Las Cumbres Observatory (LCO) Global Robotic Telescope Network

- 3C120 observations : 2016 Dec 2018 Apr
- UgVriz imaging photometry with LCO robotic 1m network.
- Floyds spectroscopy with 2m FTN/FTS in Hawaii/Australia.

LCO Robotic 1m Imaging Photometry

Aperture Photometry using AstroImageJ Multi-site inter-calibrations using CREAM

Continuum Echo Mapping : T(r) profiles of Accretion Discs

- Measure the time delay spectrum $\tau(\lambda)$
- To find the disk temperature profile T (r)

Blackbody Disc Delay Maps

 $< \tau > \sim (M Mdot)^{1/3} \lambda^{4/3}$ Independent of disk inclination.

Delay map shape depends on disk inclination

And slope α of $T(r) \sim R^{-\alpha}$ temperature profile

Theory: $\alpha = 3/4$

Starkey, et al. 2016

CREAM fit to Light Curves

(Starkey et al. 2016)

- CREAM: MCMC fit of
- lamp post model.
- Driving lightcurve:
 X(t) = fourier series
 with DRW prior.
- $\Psi(\tau|\lambda) = \text{echo maps}$
- face-on blackbody disc
- $T(r) = T_1 (r/r_1)^{-3/4}$

Delay Spectrum: $\tau(\lambda) \rightarrow T(r) \rightarrow M dM/dt$

Variations isolate the Disk Spectrum $F(t, \lambda) = \overline{F}(\lambda) + \Delta F(\lambda) \int \Psi(\tau|\lambda) X(t-\tau) d\tau$

LCO Robotic 2m/Floyds Spectra

Emission-Line Light Curves

HJD - 2450000

CREAM fit : Emission-Line Light Curves

Velocity-Resolved CCF Lags

Symmetric "disc-like" kinematics

Black Hole Mass from Hβ

$R_{H\beta} vs L_{5100} \quad and \quad M_{BH} vs \ \sigma_*$

3C120 is close to pivot point on both relations.

Summary of Main Conclusions

- O. Robotic RM works, and is very efficient of human time.
- 1. Continuum (UgVriz) lags rise with wavelength.
- Delays span 3 or 4 days compatible with $\tau \sim \lambda^{4/3}$.
- CREAM fits a standard thin blackbody disc with $L/L_{Edd} \sim 0.5$.
- 2. Caveat: Balmer (and Paschen) Jump in $\tau(\lambda)$ from CCF lags

=> possible HI Bound-Free contamination.

- 3. Caveat to Caveat: Disc flux spectrum, isolated by variations, matches disc theory $f_{\nu} \sim \nu^{1/3}$ (no sign of Bound-free edges)
- 4. HeII lag similar to r,i continuum lags, 2.6d relative to V.
- 5. $H\beta lag = 21 d => M_{BH} = 6.5 \times 10^7 (f/5.5) M_{sun}$
- 6. Velocity-resolved lags => symmetric disc-like kinematics

Thanks for Listening !

MNRAS 000, 1-18 (2018)

Preprint 17 September 2019

Compiled using MNRAS IATEX style file v3.0

Reverberation Mapping of the Seyfert 1 Galaxy 3C 120

Michael S. Hlabathe^{1,2*}, David A. Starkey³, Keith Horne³, Encarni Romero-Colmenero^{2,4}, Steven M. Crawford⁵, Stefano Valenti^{6,7}, Hartmut Winkler⁸, Aaron J. Barth⁹, Christopher A. Onken¹⁰, David J. Sand¹¹, Tommaso Treu¹², Carolin Villforth¹³

Michael Hlabathe, Cape Town

Guilin 2019 Sep 20

Nunivesith