

European Research Council

Dusty Echoes of Nearby AGN

Bella Boulderstone¹, Sebastian Hönig, Triana Almeyda

School of Physics and Astronomy University of Southampton, UK

September 20 2019

 $^1{\sf Bella}.{\sf Boulderstone} @ {\sf soton.ac.uk} \\$

Lag-Luminosity Relationship

Figure: A plot showing the lag-luminosity relationship from Koshida et al. 2014

VEILS

Southampton

AGN as Standard Candles

• Use τ as a proxy for luminosity to create a Hubble Diagram.

Figure: A simulated AGN Hubble Diagram. Image credit: Hönig et al. 2017.

VEILS

- Southampton
- Use τ as a proxy for luminosity to create a Hubble Diagram.
- Need Low Intrinsic Scatter

The Sample

Southampton

- \blacktriangleright Low Redshift Type 1s, $z\sim 0.015$
- ▶ 15 AGN, 3 NLSy1s, 4 previously reverberation mapped
- Monitoring:
 - V ($\sim 0.5 \mu$ m) and K ($\sim 2 \mu$ m) band
 - SMARTS 1.3m telescope

Light Curves NGC3783

Figure: Light curve for NGC3783, V band in blue, K band in red.

Southampton

Light Curves ESO323-G77

Figure: Light curve for ESO323-G77, V band in blue, K band in red.

Southampton

Light Curves H0557-385

Figure: Light curve for H0557-385, V band in blue, K band in red.

Interpolations

Figure: Light curve for NGC3783, V band in blue, K band in red.

Interpolations

Interpolations

Southampton

Interpolations

Interpolations

Interpolations

Interpolations

Interpolations

Figure: Matching Method at $\tau=0~{\rm days}$

Interpolations

Figure: Matching Method at $\tau=1~{\rm day}$

Interpolations

Figure: Matching Method at $\tau = 2$ days

Interpolations

Figure: Matching Method at $\tau=3~{\rm days}$

Results NGC3783

Figure: Cross correlation function for NGC3783. The vertical lines on each plot show the result and the 1σ confidence boundaries.

Figure: Histogram showing the frequency distribution for the peaks CCFs NGC3783, $\tau = 100^{+29}_{-4}$ days.

200

Results ESO323-G77

Southampton

Figure: Cross correlation function for ESO323-G77. The vertical lines on each plot show the result and the 1σ confidence boundaries.

Figure: Histogram showing the frequency distribution for the peaks CCFs ESO323-G77, $\tau = 89^{+11}_{-18}$ days.

Results H0557-385 Southampton

Figure: Cross correlation function for H0557-385. The vertical lines on each plot show the result and the 1σ confidence boundaries.

Figure: Histogram showing the frequency distribution for the peaks CCFs H0557-385, $\tau = 212^{+43}_{-39}$ days.

Discussion

Southampton

Lag Luminosity Relationship

Figure: Our results with those from Koshida et al. 2014. The red line dashed line has a gradient of 0.5.

Discussion

Southampton

Lag Luminosity Relationship

Figure: Our results for the gradient of the slope, $\beta=0.38^{+0.079}_{-0.065}$ from Bayesian Analysis.

Figure: Our results for the intrinsic scatter $= 0.011^{+0.015}_{-0.0073}$, consistent with 0 scatter in a 95% confidence interval.

Summary & Future Work

Southampton

- \blacktriangleright Result for NGC3783 of $\tau = 100^{+29}_{-4}$ days, $R_{\rm sub} \sim 0.083~{\rm pc}$
- ▶ Result for ESO323-G77 of $\tau = 89^{+11}_{-18}$ days, $R_{\rm sub} \sim 0.075$ pc
- \blacktriangleright Result for H0557-385 of $\tau=212^{+43}_{-39}$ days, $R_{\rm sub}\sim 0.18~{\rm pc}$
- β consistent with 0.5 within 2σ : $0.38^{+0.079}_{-0.065}$
- Low intrinsic scatter: $0.011^{+0.015}_{-0.0073}$
- Repeat with other AGN in our sample

↓ Continue laying groundwork for VEILS.