Multi-wavelength Observations of the *super-Eddington* Accretion Flow in Narrow-line Seyfert 1 Galaxies

Chichuan Jin (金驰川) National Astronomical Observatories, CAS collaborators: Chris Done, Martin Ward, Emma Gardner

Guilin, 24/09/2019

Narrow-line Seyfert 1 Galaxies

- 1. $H\beta$ FWHM < 2000 km s⁻¹
- 2. [OIII] 5007 / Hβ < 3 (Goodrich 1989)
- 3. Strong FeII emission lines
- 4. Steep X-ray spectra (Γ > 2), a prominent soft X-ray excess (e.g. Boller, Brandt, Fink 1996)
- 5. Low black hole mass $(10^5-10^7 M_{\odot})$, and high mass accretion rate close to Eddington (Komossa 2008)
- Strong X-ray variability, but weak optical/UV variability (Leighly 1999)

Narrow-line Seyfert 1 Galaxies

Complexities in the NLS1s

Not all have simple steep X-ray spectra (cold/warm absorption, partial covering, reflection, etc.)
 Gallo 2006:

X-ray 'simple' and X-ray 'complex' NLS1s

- 2. Not all have high mass accretion rates: NGC 4395, M~ $5x10^{5}M_{\odot}$, L/L_{Edd} < 0.01 (Vasudevan & Fabian)
- Black hole spin (Reynolds et al. 2013; Done & Jin 2016)
- 4. Radio-loudness (Merloni, Heinz & Di Matteo 2003)
- 5. Can show AGN X-ray QPO!

Narrow-line Seyfert 1 Galaxies

RE J1034+396:

An X-ray QPO lasts for more than one decade! (Jin et al. in prep.)

The Extremes: Super-Eddington NLS1s

Type-1 AGN Mean SED Evolution

Super-Eddington NLS1 SED

X-ray Spectral Decomposition

- Soft excess: low-T, optically thick Comptonisation: extended corona
- Narrow Iron line, weak reflection component: low black hole spin
- Inner disc component in the soft excess

Examples:

- PG 1244+026 (Jin et al. 2013;
 Gardner & Done 2014)
- RX J0439.6-5311 (Jin et al. 2017a)
- ✓ Ark 564 (Kara et al. 2018)
- Ton S180 (Parker et al. 2018)

Broadband Spectral Energy Distribution of the NLS1 RX J0439.6-5311

the so-far most robust super-Eddington NLS1

$M = 10^8 M_{\odot}$

$M = 10^7 M_{\odot}$

$M = 10^{6} M_{\odot}$

$M = 10^5 M_{\odot}$

Energy Budget and Radiation Efficiency Most robust super-Eddington NLS1: RXJ0439.6-5311

Black Hole Mass: 1. X-ray RMS: $0.8-3 \times 10^{6} M_{\odot}$ 2. X-ray HFB: $3-6 \times 10^{6} M_{\odot}$ 3. Opt. Spec: $5-9 \times 10^{6} M_{\odot}$ 4. SED: $1.8 \times 10^{7} M_{\odot}$

$$F_{\rm opt} \propto \cos i \, (M\dot{M})^{2/3}$$

Davis & Laor (2011)

BH	Mass (M_{\odot})	5 × 10 ⁶	7×10^{6}	1 × 10 ⁷	1.8×10^{7}
L ₁ /	'L _{Edd}	6.5	4.6	3.2	1.8
L ₂ /	'L _{Edd}	5.4	3.8	2.7	1.5
ṁ _o	ut	23.8	12.1	5.9	1.8

Energy Budget and Radiation Efficiency

SED discrepancy: Intermediate Mass black hole: RX J1140.1+0307 An Extreme Case!

The Accretion Disc Structure

- Energy loss through the disc wind and/or advection:
 slim disc (e.g. Abramowicz et al. 1988)
 puffed-up disc (Jiang et al. 2014)
- Energetic soft excess, but weak
 [OIII] 5007 in the NLR:
 shielding mechanism
- ✓ BLR and NLR outflows

A Unified Picture for the Accretion Flow in all Super-Eddington NLS1s RXJ0439.6-5311, PG 1244+026, 1H0707-495 Similar black hole mass, mass accretion rate; Similar optical/UV continuum and line emission;

but totally different X-ray spectral variability?! (viewing angle effect)

A Unified Picture for the Accretion Flow in all Super-Eddington NLS1s

the **viewing angle effect** relative to the clumpy disc wind Hagino et al. (2016); Done & Jin et al. (2016); Jin et al. (2017b)

Super-Eddington Narrow-Line Seyfert 1s

Jin et al. (2017b)

Multi-wavelength Variability Studies

XMM-Newton

t: min~hours

t: day~month

Correlations between the Optical, UV and X-ray Variability

X-ray leads UV, UV leads Optical X-ray radiates the outer disc and gets reprocessed

NGC 5548 (Swift & HST: 125 days' monitoring campain): Edelson et al. (2015)

Different Accretion Disc Structure under Different Mass Accretion Rates

Low-Eddington AGN: e.g. NGC 5548, NGC 4151, NGC 4051... (e.g. Edelson's talk)

Super-Eddington NLS1

Recent Large XMM-Newton/NuSTAR Program (PI: C. Jin)

Mrk 1044: 420 ksec, simultaneous UV (2600A), 0.3-79 keV obs no correlation is found, as predicted by the puffed-up disc scenario

The Future of AGN Multi-wavelength Observations

The Future: time-domain astronomy

Multi-wavelength

Multi-messenger GW, neutrino

LIGO/VIRGO/Kangra

The Einstein Probe (EP) mission

The first Lobster-eye soft X-ray all-sky monitor:

- Approved in 2017/Dec, fully funded in the space science programme of CAS (2nd phase)
- Expected launch: 2022/Dec
- Lifetime: 3 years (5 years goal)
- Large Field of View 3600 sq. deg.
- Monitoring: soft X-ray band: 0.5-4 keV
- Sensitivity: > 1 order of magnitude higher than those in orbit
- Good angular resolution (~5' fwhm) and positioning accuracy (<1')
- Autonomous X-ray follow-up (<10 arcsec localisation; 0.3-10keV)
- Fast alert data downlink and (possible) fast uplink (ToO)

AGN Observation of EP

By-product science: Large samples of AGN can be monitored at various cadence

• Monitoring variability on long timescales

~140 AGN detectable (5 sigma) in one day data taking (normal survey mode)

~700 AGN detectable weekly

~1,600 AGN detectable monthly

AGN Observation of EP

AGN Study in the time domain:

- 1. <u>AGN X-ray Long-term monitoring (WXT)</u>
- > AGN X-ray Variability and Power Spectrum
- Most Extremely Variable AGN: AGN outbursts, flares, state transition (?), duty cycle (?)
- Multi-wavelength variability study

etc...

2. <u>ToO Observations (FXT)</u>

Deep Following-up observations of unusual AGN behaviors

etc...

Conclusions

- 1. NLS1s are complex sources: X-ray simple & X-ray complex
- 2. The X-ray spectrum can be decomposed into a hard X-ray Compt., soft X-ray Compt., inner disc and a weak reflection, which is supported by detailed X-ray spectral-timing analyses;
- 3. The optical/UV of the broadband SED is dominated by the disc emission plus the host galaxy
- 4. A large fraction of the energy in the flow must be taken away by the outflow and/or advection rather than all being radiated
- 5. Viewing angle effect plays an important rule in producing the diversity of multi-wavelength properties
- 6. Multiwavelength monitoring of unobscured super-Edd NLS1s is also very important for understanding the AGN accretion
- 7. Much more multiwavelength monitoring data are expected in the future with large surveys and all-sky monitors

Thank you! ccjin@bao.ac.cn