

Thanks to the organizers!

• SOC

- Jian-Min Wang (chair)
- Keith Horne (co-chair)
- Brad Peterson (co-chair)
- Bozena Czerny
- Andy Fabian
- Fred Hamann
- Luis Ho
- Sarah Gallagher
- Ari Laor
- Ian McHardy

• LOC

- Ning Wang (chair)
- Ming Xiao
- Pu Du
- Yue Sun
- Qiao-Li Mo

Current state of affairs

- It's been an exciting week, seeing all the progress that has been made in studying active nuclei.
 - Development of Chinese astronomy, notably in AGN studies, has been truly remarkable.
- Thanks to Hagai Netzer for an excellent and introspective summary.

Current state of affairs

- Two personal opinions:
 - Advances in quasar astronomy are usually tied to new technology.
 - Quasar research drove the development of multiwavelength astrophysics.
 - With certain exceptions, RM programs are largely carried out by groups with either guaranteed or preferential telescope access.
 - It's difficult to get time for large programs on shared (public) facilities.

Enabling Technologies

- Optical RM was enabled by proliferation of CCDs on small/mediumsized telescopes.
- High cadence RM was enabled by robotic ground-based telescopes and SWIFT.
- Interferometric measurement of the BLR size has been enabled by VLTI and GRAVITY.
- Characterization of feeding and fueling on torus-scales is enabled by ALMA.
- Transient studies have been enabled by wide-field monitoring (e.g., ASAS-SN).

Future

- The Large Synoptic Survey Telescope (LSST) will be a game changer, observing the accessible sky at a cadence of days in up to six bands.
 - First light in 2020.

Future

- ESA's Advanced Telescope for High-Energy Astrophysics (ATHENA) will have capabilities for X-ray RM similar to what we have at longer wavelengths.
 - Basic problem now is that the time scales involved are minutes, but it takes ~ 5ks to get a good spectrum.
 - Current launch date is 2031.

Future

- NASA's Large Ultraviolet Optical Infrared Surveyor (LUVOIR) will enable stellar dynamical measurement of AGN black hole masses and high S/N spectra for study of outflows in multiple resonance lines.
 - Launch NET 2039

Current state of affairs

- Area of most concern: we need to carry out RM programs on more AGNs in the rest-frame UV.
 - Strong resonance line absorption used to scare me Jerry Kriss's talk shows that it's another probe.
 - AGN STORM showed that we need to move beyond geometry to understand RM results, modeling of physics needs to be included.
 - AGN STORM and other programs have also shown that simultaneous X-ray monitoring is essential for a complete picture.
- However, all UV and X-ray observatories are highly oversubscribed public facilities.

Kronos

- Lessons from *Kronos* that turned out to be true:
- Simulations are of limited utility.
 - "No battle plan survives first contact with the enemy*." (Usually attributed to Helmuth Karl Bernard Graf von Moltke, though I'd not be surprised if Sun Tzu 孫子 said it first...)
- Neither NASA (nor anyone else) is going to give you a \$200M mission if you can't get 200 *Hubble Space Telescope* orbits as a demonstration.
- The Hubble Space Telescope Time Allocation Committee (TAC) is not going to award you 200 orbits until they see a velocity-delay map from ground-based data.

AGN STORM HST Proposal History

Cycle	Year	Proposal	Outcome
12	2003	200 orbit STIS	First quartile, first under cutoff for LARGE
13	2004	200 orbit STIS	Second quartile, S/C and STIS technical concerns (lifetime. STIS failed 2004 August)
17	2008	200 orbit COS	Second quartile (first post STS-125 cycle)
18	2010	200 orbit COS	First quartile, first under cutoff for LARGE
19	2011	200 orbit COS	First quartile, first under cutoff for LARGE
20	2012	180 orbit COS	Fourth quartile
21	2013	179 orbit COS	First quintile, ACCEPTED

Getting approval to do RM with *HST* is very difficult.

Breakthrough!

- The fundamental difficulty with RM is that it is resource-intensive.
- Success was achieved when the RM community proposed as a community (The International AGN Watch) for a campaign with *IUE* and assorted groundbased telescopes in 1988-89.

Data from Clavel et al. 1991 and Peterson et al. 1991

My recommendation

- Emulate the International AGN Watch and propose high-cadence RM projects as a community.
- There is some urgency to this since *Hubble* has not been serviced since 2009. Optimistic projections for its operational future extend to ~2025.