BLR Modeling from Near-IR Interferometry, and the Hot Dust Size – AGN Luminosity Relation

Jinyi Shangguan on behalf of the GRAVITY Collaboration

Max-Planck Institute for Extraterrestrial Physics

BLR modeling from 3C273 GRAVITY data

Resolving the hot dust emission with GRAVITY

NGC 1068 imaging: A ring structure

Hot dust size of Type 1 AGNs

BLR is smaller than the torus

Luminosity-size relation of hot dust emission

Summary

- Near-IR interferometry is powerful to measure the BH mass and to use quasars as probes of the cosmology
- Implement a BLR model and include the photoionization physics
 - Covering factor is larger than expected
- Direct imaging of NGC 1068 K-band emission reveals a ring structure aligned with the maser disk
- 8 new GRAVITY hot dust sizes: strong R-L relation as found in previous works
- Continuum emission is always more extended than BLR
- Hot dust size drops relatively towards bright AGNs

Appendix: Visibility loss

