Reverberation Mapping of AGNs with High Accretion Rates

Pu Du Institute of High Energy Physics (IHEP), CAS

SEAMBH collaboration (PI: Jian-Min Wang)

Institute of High Energy Physics Peking University Nanjing Normal University Tel Aviv University (2012-2015)

Yunnan Observatories University of Science and Technology of China Nanjing University

High accretion rate AGNs?

- Lack of AGNs with high accretion rates
- High-accretion-rate AGNs are more

abundant in high-z universe

• Different or not?

Peterson (2011)

Accretion regimes?

Low accretion disks (ADAF; ADIOs)

 $L_{
m rad} \propto \dot{M}^2$

Shakura-Sunyaev disk (intermediate rates)

 $L_{
m rad} \propto \dot{M}$

Slim disks (high accretion rates)

 $L_{\bullet} = l_0 (1 + a \ln \dot{M}_{\bullet}) M_{\bullet}$

BLR Physics: different

SEAMBH project

a RM campaign targeting
 Super-Eddington Accreting Massive Black Holes (SEAMBHs)

- to understand:
 - 1. the physics of the SEAMBHs
 - 2. SEAMBHs as cosmological distances

Sample selection

- Strong Fe II emission
- Single-epoch spectroscopy based on

$$\dot{M} = 20.1 \left(\frac{l_{44}}{\cos i} \right)^{3/2} m_7^{-2},$$

 $\dot{M} = \dot{M}_{\bullet} / L_{\rm Edd} c^{-2}$

Harbin

• Fushun Shenyang

YELLOW

SEA

Shanghai

💕 aipei

EAST CHINA SEA

NGSU

Fuzhou

nch

Lake Khanka

NORTH KOREA

Pyongyang

🗆 Seoul

SOUTH

KOREA

ladivosto

JAPAN S

Observing strategy

- Observe a nearby comparison star along the slit simultaneously
- Photometry to test the variation
- [OIII] too weak!

Target	Comparison star

Observation

- Sampling interval
- 2012: 1~2 d (τ~7-15 d)
- 2013: 5~6 d (τ~15-40 d)
- 2014: 6~7 d (τ~15-60 d)
- 15-16: 5~7 d (τ~25-100 d)
- 17-18: 5~7 d (τ~50-150 d)

- Observational period
- 2012: 110~200 d
- 2013: 160~200 d
- 2014: 150~200 d
- 15-16: 180~600 d
- 17-18: 400~600 d

Famous objects: Mrk 335, Mrk 142, Mrk 1044, Mrk 382, Mrk 493, KUG 1031+398, Ark 564, some PG quasars,

Mrk 335

14.0 mag

SDSSJ074352

15.4 mag

SDSSJ084533

17.7 mag

Variation amplitude

- non-SEAMBHs: NGC 5548, 3C 120, Mrk 110, … *F*_{var}= 15–35%
- SEAMBHs: Mrk 335, Mrk 142, Mrk 493, … *F*_{var} = 3-10%

NGC 5548 (non-SEAMBH)

Need high calibration accuracy!

Variation amplitude

Need high calibration accuracy!

Accuracy: NGC 5548 (Lu et al. 2016)

Accuracy evaluation: SDSSJ075101

Std of [OIII] ~3%

Accuracy evaluation

comparison-star based calibration Accuracy ~2%

Host subtraction

image decomposition for the objects with HST obs.

(Shen et al. 2011)

Host subtraction

• Otherwise, an empirical relationship

 $x = \log \left(L_{5100}^{\text{tot}} / 10^{44} \text{erg s}^{-1} \right)$

 $\frac{L_{5100,\text{host}}}{L_{5100,\text{QSO}}} = 0.8052 - 1.5502x + 0.9121x^2 - 0.1577x^3$

2.5

2.0

units)

- host fraction (@5100A) 15% 40%
- consistent with the spectral fitting results.

Let's come back to the R-L relationship

Du et al. (2014; 2015; 2016a; 2018), Wang et al. (2014), Hu et al. (2015)

Du et al. (2014; 2015; 2016a; 2018), Wang et al. (2014), Hu et al. (2015)

Du et al. (2014; 2015; 2016a; 2018), Wang et al. (2014), Hu et al. (2015)

Grier et al. (2017)

Is accretion rate a primary driver?

We collect 8 different spectral parameters:

- $\mathcal{R}_{\mathrm{Fe}} = F_{\mathrm{Fe}}/F_{\mathrm{H}\beta}$ FWHM_{Fe II}/FWHM_{H β}
- FWHM_{H β} A = $[\lambda_c(3/4) \lambda_c(1/4)]/FWHM_{H\beta}$
- $\mathrm{EW}_{[\mathrm{OIII}]}$ $\mathrm{EW}_{\mathrm{H}\beta}$
- $\mathcal{D}_{\mathrm{H}\beta} = \mathrm{FWHM}_{\mathrm{H}\beta} / \sigma_{\mathrm{H}\beta}$ $\mathrm{EW}_{\mathrm{HeII}}$
- All of them can be measured from single-epoch spectral Du et al. (2019)

Is accretion rate a primary driver?

• The parameters are measured by multi-component fitting or from literatures:

- Interesting to check for the present RM sample
- Completeness of the RM sample
- Samples: Bentz et al. 2013

SEAMBH campaign some other objects

- Interesting to check for the present RM sample
- Completeness of the RM sample
- Samples:

Bentz et al. 2013 SEAMBH campaign some other objects

• Some highlights

• Some highlights

If Fe II is stronger:

- Fe II-emitting region is closer to Hβ region
- The width ratio \rightarrow 1

R-L relation color-coded by different parameters

R-L relation color-coded by different parameters

Du et al. (2019)

R_{Fe} is definitely the primary driver for the shortened lags!

Eigenvector 1 sequence can break the degeneracy!

- Accretion rate is the primary driver
- The influence of orientation is not obvious

Self-shadowing effect of slim accretion disk

the self-shadowing effect (Wang et al. 2014):

Clouds (Region II) are closer to BH

$$\frac{R_{\rm BLR,I}}{R_{\rm BLR,II}} = \left(\frac{L_{\rm ion,I}}{L_{\rm ion,II}}\right)^{1/2} = \left(\frac{F_{\rm ion,I}}{F_{\rm ion,II}}\right)^{1/2},$$

$$\frac{R_{\rm BLR,I}}{R_{\rm BLR,II}} \approx 2.0 \dot{\mathcal{M}}_{50}^{0.3},$$

A new scaling relation: $\log (R_{H\beta}/lt - days) = \alpha + \beta \log \ell_{44} + \gamma \mathcal{R}_{Fe}$

The new scaling relation & BH mass measurement

If there is no difference for f factor

Accretion Rate and Eddington Ratio

Accretion-disk based BH mass vs. single-epoch BH mass based R-L relation (Mejia-Restrepo et al. 2018)

M-sigma based BH mass vs. RM BH mass (Yu et al. 2019) Pseudobulge?

Summary

- SEAMBHs: shortened Hβ time lags
- R_{Fe} is the primary driver for the shortened lags
- A new scaling relation

$$\log \left(R_{\mathrm{H}\beta} / \mathrm{lt} - \mathrm{days} \right) = \alpha + \beta \log \ell_{44} + \gamma \mathcal{R}_{\mathrm{Fe}}$$

Thanks!

SEAMBHs: candidates

- Strong Fe II
- Narrow Hβ
- weak [O III]

• Some highlights

In 2016, we established a bivariate correlation: BLR fundamental plane

In 2016, we established a bivariate correlation: BLR fundamental plane

A good beginning for direct indicator of accretion rate

ullet

 Do NOT need any information of luminosity!

In 2016, we established a bivariate correlation: BLR fundamental plane

The scatter of FP need to be improved by including more singleepoch properties

Calibration: pros and cons

• [OIII]-based

Pros:

no need to rotate the slit

Cons:

Spectral slope issue

Comparison-star-based

Pros:

Spectral slope calibration

Cons:

Inaccurate slit rotate -> calibration issue

