A topic of around diamond detectors

Special topic 59 02/15/2019

Introduction - Motivation

Distinct properties interesting for HEP applications:

- Large band gap
- High thermal conductivity
- Low leakage current
- Large displacement energy

Disadvantages:

• Large band gap

- \rightarrow low leakage current
- \rightarrow no cooling required
- \rightarrow low noise
- Low dielectric constant \rightarrow low capacitance, low noise
 - \rightarrow high radiation tolerance

 \rightarrow planar detectors give $\sim 1/2$ signal of Si (of same t)

At large radiation doses, without gain, it is the drift distance relative to the mean free path that determines the size of the signal

• Next Talk (Nicola Venturi) \rightarrow mean free path

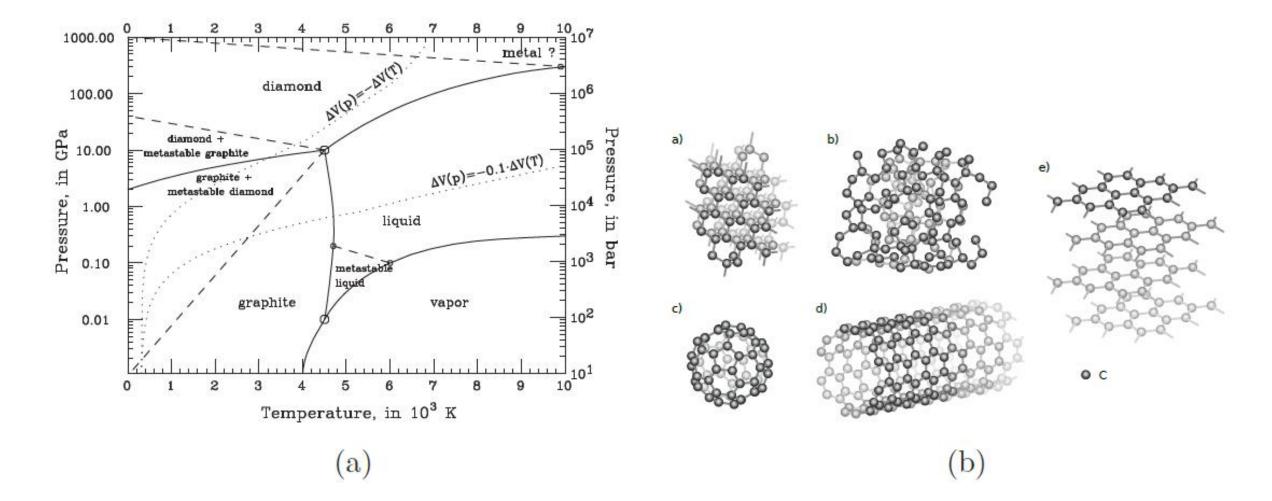
HSTD11 – Okinawa, Japan

Harris Kagan

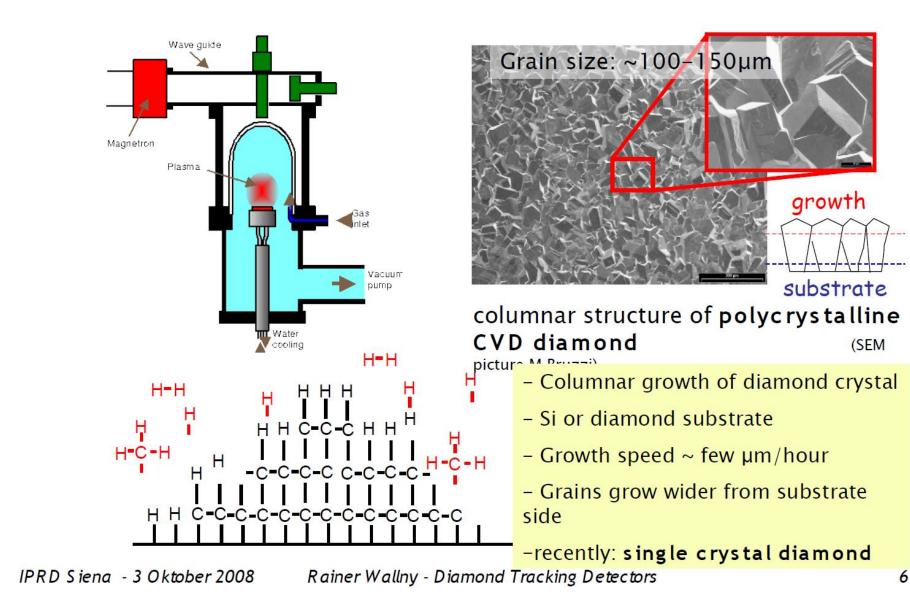
2

Properties

Quantity	Diamond	Si	\mathbf{Ge}	GaAs]
Atomic number Z	6	14	32	31, 33	
Number of atoms $N [10^{22} \mathrm{cm}^{-3}]$	17.7	4.96	4.41	4.43	
Mass density $\rho [\text{g cm}^{-3}]$	3.51	2.33	5.33	5.32	
Radiation length X_0 [cm]	12.0	9.4	2.3	2.3	
Relative dielectric constant ϵ	5.7	11.9	16.3	13.1	
Band gap E_g [eV]	5.47	1.12	0.67	1.42	
Intrinsic carrier density $n_i [\mathrm{cm}^{-3}]$	$< 10^{3}$	1.45×10^{10}	2.4×10^{13}	1.79×10^6	
Resistivity $\rho_c [\Omega \mathrm{cm}]$	$> 10^{12}$	2.3×10^{5}	47	10 ⁸	
Electron mobility $\mu_e [\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}]$	1800	1350	3900	8500	
Hole mobility $\mu_h \left[\operatorname{cm}^2 \operatorname{V}^{-1} \operatorname{s}^{-1} \right]$	1200	480	1900	400]
Saturation field E_s [V cm ⁻¹]	2×10^4	2×10^4	2000	3000	Far less noise
Electron saturation velocity					fluctuation,
$v_s [10^6 \mathrm{cm s^{-1}}]$	22	8.2	5.9	8.0	,
Operational field E_o [V cm ⁻¹]	10^{4}	2000	1000	2000	can work without
Electron operational velocity					PN junction ==
$v_o [10^6 {\rm cm s^{-1}}]$	20	3	3	10	
Energy to create e-h pair E_{eh} [eV]	13	3.6	$3.0 \ (@77 \mathrm{K})$	4.3	without depletion
Mean MIP ionization $q_p [e \mu m^{-1}]$	36	108	340	130]


Classification of diamond type

Type	Impurities	Comments
Ia	Aggregated nitrogen up to 2500 ppm	Most natural diamonds
– Ib	Substitutional nitrogen up to 300 ppm	Most synthetic diamonds
_ IIa	Substitutional nitrogen $< 1 \text{ppm}$	Detector material
IIb	Boron doped	p-type semiconductor


Because of impurity (nitrogen) which acts as "trap", it can not be used as this kind of detector

High pressure & High temperature

Reference

CVD Diamond Production

Key Point : Progress on making(growing) larger size <-- within this 10 years

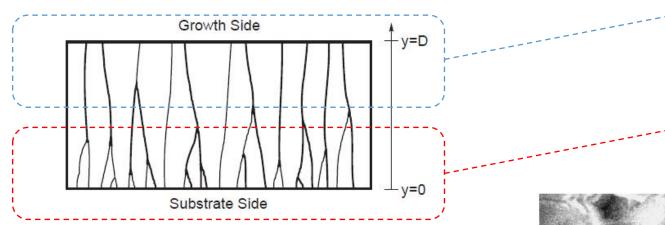
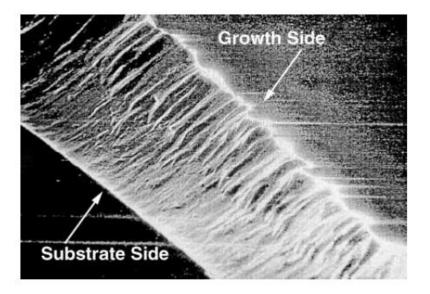
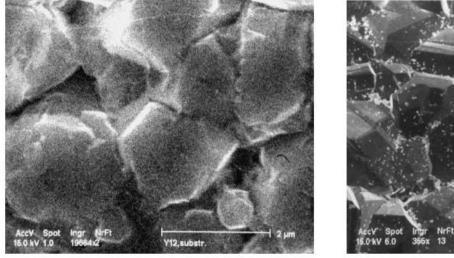




Figure 3.3: Schematic section of a diamond film.

Cut the bottom and only use the upper part for detector

Density of boundaries are high at the substrate side.

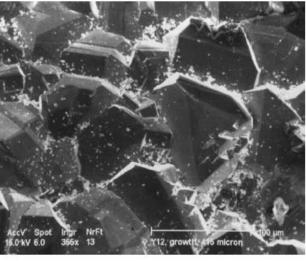
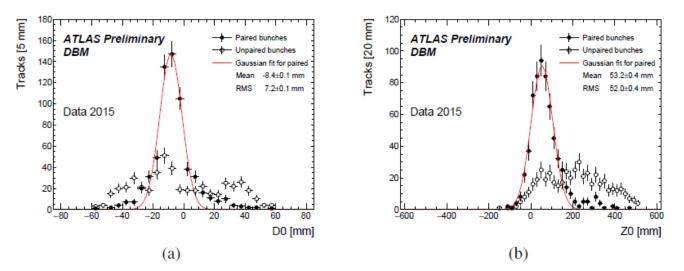


Figure 3.5: Left: Substrate (left) and growth (right) sides of the same diamond sample (415 μ m thick). Note the different scales of the images: 2μ m for the substrate side and 100μ m for the growth side.

Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC, HL-LHC and Beyond


The RD42 Collaboration ¹ from

CERN-LHCC-2018-015 / LHCC-SR-005 27/05/2018

Example : Beam Condition Monitor

The ATLAS Diamond Beam Monitor

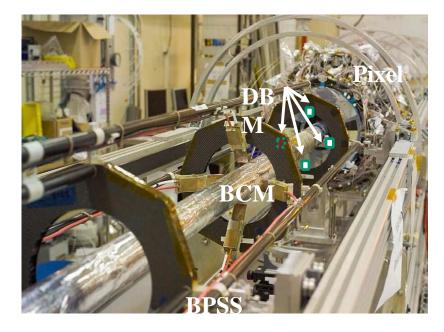
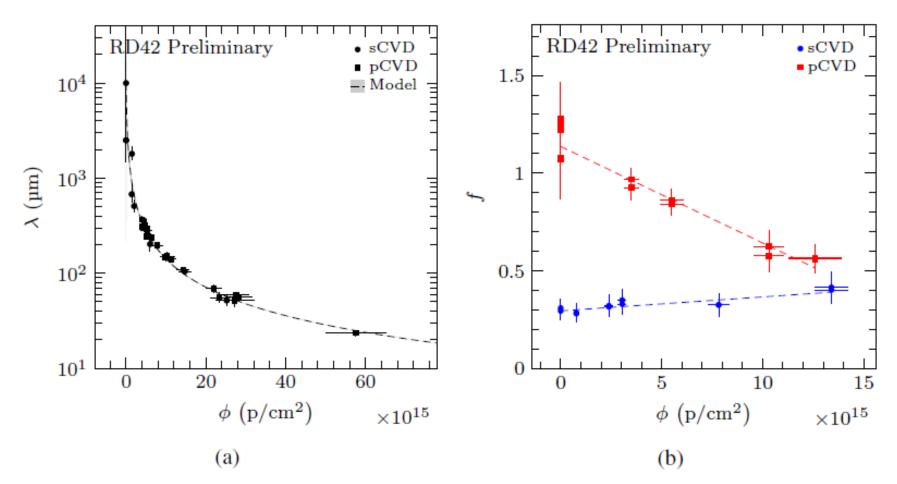
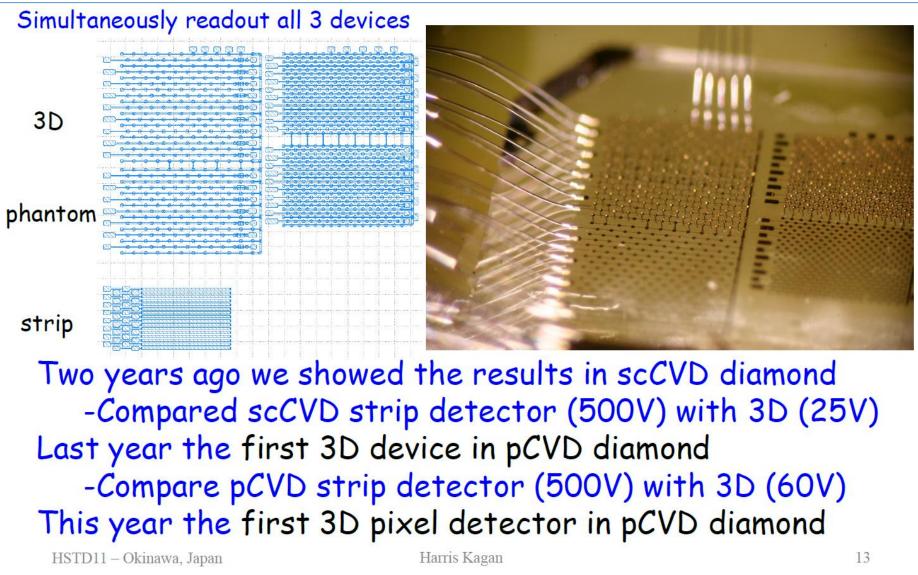
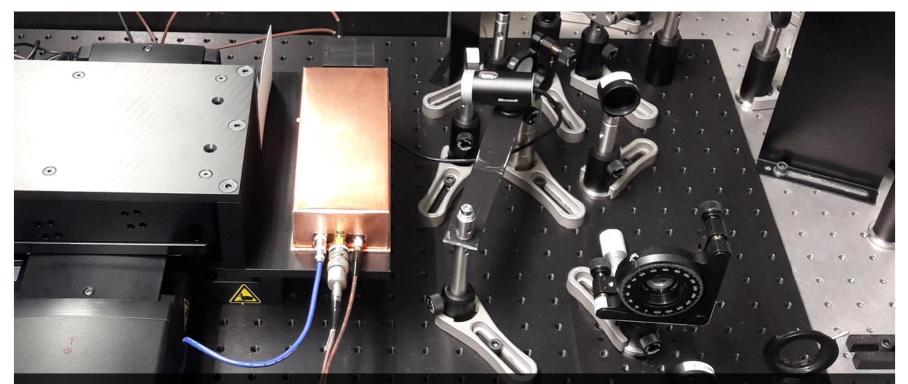


Figure 4: (a) Radial distance and (b) longitudinal distance of of the projected particle tracks closest approach to the interaction point recorded by a single DBM telescope with preliminary alignment.

Radiation Tolerance Representation Tolerance

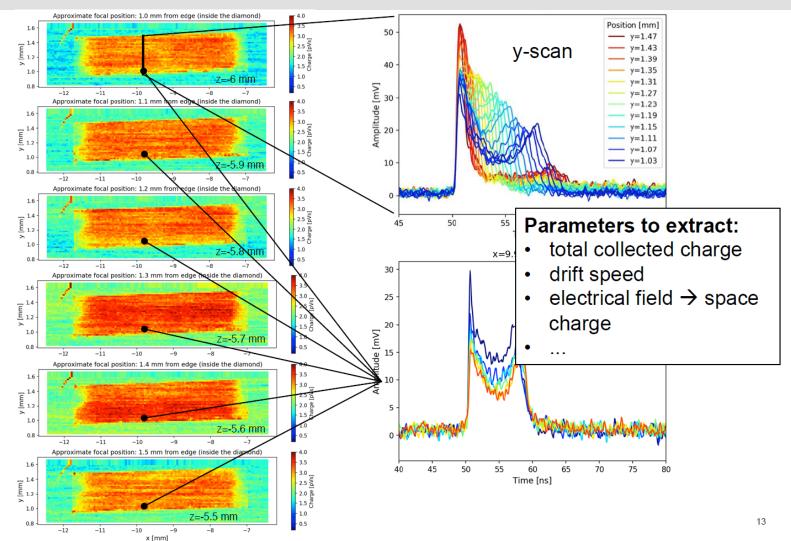




Figure 3: (a) Measured MFP (λ) as a function of 24 GeV proton fluence compared to the radiation damage model (dotted curve) [15]. (b) Signal response figure of merit *f* for pCVD and scCVD samples as a function of 800 MeV proton fluence along with linear fits to pCVD (red line) and scCVD (blue line) data [15].

3D Sensor Development

... we can see many characterization results from above slide or others ¹⁰

Other example of characterization : two-photon TCT on diamond detector


A novel Transient-Current-Technique based on 2-Photon Absorption in Diamond

Christian Dorfer, Dmitry Hits, ETH Zurich 11th International "Hiroshima" Symposium, 13 December 2017

TCT scan results

First 3D Scan

Bias voltage -400V (0.7V/um), 50 waveform averaging, 3993 scan points, 0.2 nJ pulse energy

12

PN-junction

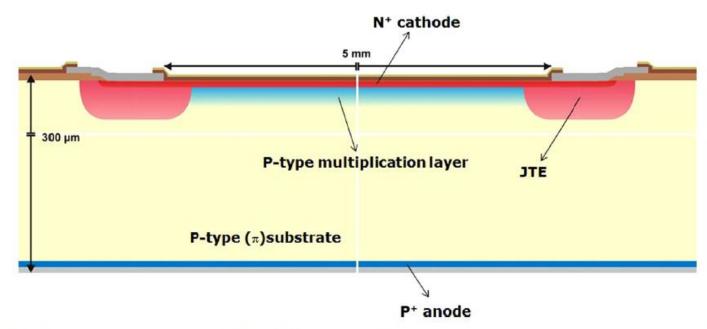
Producing "N-type" is/was very difficult (I do not follow why it is), gradually it becomes possible but still challenging

P-type N-type							
	Conventional (1 0 0)	(1 1 0)	(111)	(1 1 3)			
Substrate availability	++	+	-	-			
Window of suitable growth conditions	+	+	-	++			
Growth rates	-	++(×5)		+(*2)			
Crystalline quality	++	+	-	++			
Boron doping efficiency	-	+	++(×10)	+(*5)			
Nitrogen doping efficiency	-	?	++	+			
NV center preferential orientation	(0%)	-(50%)	++(100%)	+(73%)			

For each criterion considered, ++ indicates a high suitability while -- indicates that the orientation is not favorable. *CVD*, chemical vapor deposition; *NV*, nitrogen-vacancy.

From "Power Electronics Device Applications of Diamond Semiconductors"

Example of PN structure with diamond


(a)

Cathode

n*

(a) pp⁻: [B] = 3 - 6×10¹⁷ cm⁻³ Fabrication of diamond lateral p-n (111) Substrate junction diodes on (111) substrates (b) ICP Kazuki Sato¹, Takayuki Iwasaki^{1,2,3}, Maki Shimizu^{1,3}, Hiromitsu Kato^{3,4}, Toshiharu Makino^{3,4}, etching Au/Ti Masahiko Ogura^{3,4}, Daisuke Takeuchi^{3,4}, Satoshi Yamasaki^{3,4}, and Mutsuko Hatano^{*,1,2,3} Au p-(111) Substrate (111) sub (c) [P]~10²⁰ cm⁻³ Au/Ti Au n⁺ n⁺ p-(b) Anode Anode (111) Substrate n⁺ (d) [112] Cathode [112] n⁺ D n⁺ (111) Substrate

Recall of LGAD structure

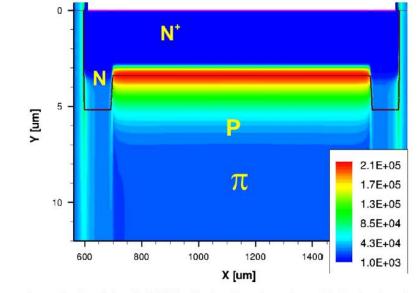


Fig. 5. Simulated electric field distribution throughout the multiplication junction of a LGAD ended with a JTE.

Fig. 4. Schematic cross-section of the LGAD pad design with a JTE structure protecting the junction edge termination.

Summary

-- Diamond "detector" is now developed and might be replaced with the current silicon detector where the radiation is high.

-- Main factor for usage of this diamond detector is the progress of CVD process which can make the detector size more than few mm now.

-- Making PN-junction for detector level is not realized yet, and a challenge.

My comment

-- One obvious drawback of this diamond detector is the small signal compared with that of silicon detector

-- If LGAD-like structure is realized on this diamond detector, what happen ? ## but I'm also not sure what happen at the "multiplication layer" beyond 10¹⁶/cm²