Some personal comments on an interesting paper

Liu Kai liukai@ihep.ac.cn

A good theoretical paper from N. Cabibbo

VOLUME 92, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending 25 JUNE 2004

Semileptonic Hyperon Decays and Cabibbo-Kobayashi-Maskawa Unitarity

Nicola Cabibbo*

Department of Physics, University of Rome-La Sapienza and INFN, Sezione di Roma 1, Piazzale A. Moro 5, 00185 Rome, Italy

Earl C. Swallow[†]

Department of Physics, Elmhurst College, Elmhurst, Illinois 60126, USA and Enrico Fermi Institute, The University of Chicago, Chicago, Illinois, USA

Roland Winston[‡]

Division of Natural Sciences, The University of California-Merced, Merced, California 95344, USA (Received 11 June 2003; published 23 June 2004)

Using a technique that is not subject to first-order SU(3) symmetry breaking effects, we determine the V_{us} element of the Cabibbo-Kobayashi-Maskawa matrix from data on semileptonic hyperon decays. We obtain $V_{us} = 0.2250(27)$, where the quoted uncertainty is purely experimental. This value is of similar experimental precision to the one derived from K_{l3} , but it is higher and thus in better agreement with the unitarity requirement, $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$. An overall fit, including the axial contributions and neglecting SU(3) breaking corrections, yields $F + D = 1.2670 \pm 0.0035$ and $F - D = -0.341 \pm 0.016$ with $\chi^2 = 2.96/3$ degrees of freedom.

Is precision the only important thing?

While a lot of attention has recently been justly devoted to the higher mass sector of the CKM matrix, it is the low mass sector, in particular, V_{ud} and V_{us} , where the highest precision can be attained. The most sensitive test of the unitarity of the CKM matrix is provided by the relation $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \Delta$. Clearly, the unitarity condition is $\Delta = 0$. The $|V_{ub}|^2$ contribution [7] is negligible (10^{-5}) at the current level of precision. The value $V_{ud} = 0.9740 \pm 0.0005$ is obtained from superallowed pure Fermi nuclear decays [8]. In combination with $V_{us} = 0.2196 \pm 0.0023$, derived from K_{e3} decay [9,10], this yields $\Delta = 0.0032 \pm 0.0014$. At face value, this represents a 2.3 standard deviation departure from unitarity [8].

Contribution from new physics overestimated!

TABLE I. Results from V_{us} analysis using measured g_1/f_1 values.

Decay Process	Rate (µsec ⁻¹)	g_1/f_1	V_{us}
$\begin{array}{c} \Lambda \to pe^{-}\overline{\nu} \\ \Sigma^{-} \to ne^{-}\overline{\nu} \\ \Xi^{-} \to \Lambda e^{-}\overline{\nu} \end{array}$	3.161(58) 6.88(24) 3.44(19)	0.718(15) -0.340(17) 0.25(5)	0.2224 ± 0.0034 0.2282 ± 0.0049 0.2367 ± 0.0099
$\Xi^{0} \to \Sigma^{+} e^{-} \overline{\nu}$ Combined	0.876(71)	1.32(+.22/18)	0.209 ± 0.0039 0.2250 ± 0.0027

The four values are clearly consistent ($\chi^2 = 2.26/3$ DOF) with the combined value of $V_{us} = 0.2250 \pm 0.0027$. This value is nearly as precise as that obtained from kaon decay ($V_{us} = 0.2196 \pm 0.0023$) and, as observed in previous analyses [15–17], is somewhat larger. In combination with $V_{ud} = 0.9740 \pm 0.0005$ obtained from superallowed pure Fermi nuclear decays [8], the larger V_{us} value from hyperon decays beautifully satisfies the unitarity constraint $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$.

pdg.lbl.gov/2018/reviews/rpp2018-rev-ckm-matrix.pdf

4 12. CKM quark-mixing matrix

where the accuracy is limited by the knowledge of the ratio of the decay constants. The average of these two determinations is quoted as [10]

$$|V_{us}| = 0.2243 \pm 0.0005.$$
 (12.8)

Some comments

- precision is not the only important thing
 - Unbiasedness is also very important
- Independent measurements are worth of performing, even results with higher precisions already released.
- What kind of paper is a good/important one?
 - It is about **physics**, not impact factor or whether published on Nature or Science.
 - Rise an important question
 - Or answer an important question.