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For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been
characterized using a Transient Current Technique based on the simultaneous absorption of two photons.
This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately
determine the real depleted volume and the effective doping concentration of the substrate. The un-
precedented spatial resolution of this new method comes from the fact that measurable free carrier
generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam.
Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We present the determination of the geometry of the space
charge region of a depleted pixel cell using a novel Transient
Current Technique (TCT) based on the Two Photon Absorption
(TPA [1,2]) physical phenomena. TPA-TCT allows three dimen-
sional mapping sensitivity even for detectors with a shallow de-
pletion depth like CMOS pixel sensors.

In conventional laser TCT [3], silicon detectors are characterized by
carrier generation using picosecond laser pulses. The laser wavelength
for TCT is above the Si bandgap (4 < 1150 nm) so Single Photon Ab-
sorption (SPA) [4], is dominant, inducing carrier generation along the
beam path. The laser wavelength also determines spot size and beam
divergence. Visible wavelengths (red, green) can be focused to small
spots (<1 um) but penetrate only few micrometers inside Si. Thus,
good point spatial resolution is only possible at the surface. Very near
infrared wavelengths (typically 1064 nm) can be collimated to~ 5 pm
over several mm depth but carriers are generated along the whole
beam path lacking point spatial resolution.

In TPA-TCT, laser wavelength is below the Si bandgap (1 >
1150 nm), for example 1200-1500 nm. In this regime, only non-
linear absorption is relevant [5]. The laser has to generate
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femtosecond pulses because TPA absorption probability is sig-
nificant only for very short pulses [6].

The advantage of TPA-TCT is to have both spatial resolution (carrier
generation just concentrated around the focal point) and large pene-
tration depth (because out-of-focus intensity does not lead to sig-
nificant absorption). The approximately ellipsoidal [7] carrier genera-
tion volume can be moved inside the sample in all three dimensions,
adjusting the focus and displacing the sample. Looking at the detector
response, we can establish a strong correlation between transient
current and spatial focal point coordinates, being able to resolve de-
tector internal structures and the depletion volume geometry.

Sensors built in High Voltage CMOS process, broadly referred to as
HVCMOS sensors [8], are monolithic particle detectors implemented
in low resistivity CMOS technology, able to withstand voltages up to
100 V. The deep n-well (DNW) is both the substrate for shallow
transistors and the collecting diode. Due to the low resistivity and
maximum voltage granted by the technology, the maximum depletion
depth is of the order of 10 pm. The version tested here corresponds to
the Capacitively Coupled Pixel Detector (CCPD v3) [8].

2. Experimental arrangement

The TPA-TCT experiment was carried out at the SGlker Singular
Laser Facility [9]. Femtosecond laser pulses are generated by a

0168-9002/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


www.sciencedirect.com/science/journal/01689002
www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2016.05.070
http://dx.doi.org/10.1016/j.nima.2016.05.070
http://dx.doi.org/10.1016/j.nima.2016.05.070
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2016.05.070&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2016.05.070&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2016.05.070&domain=pdf
http://dx.doi.org/10.1016/j.nima.2016.05.070

70 M.E Garcia et al. / Nuclear Instruments and Methods in Physics Research A 845 (2017) 69-71

commercial Ti:Sapphire oscillator-regenerative amplifier system
(Coherent Mantis-Legend, 1 kHz, 4.0 mJ, 30 fs pulses at 800 nm). A
fraction of the amplifier output is used to pump an optical para-
metric amplifier producing tunable wavelength. The experiments
were done at a wavelength of 1300 nm, bandwidth of 12 nm and a
pulse duration of 243 fs. A variable neutral density filter regulated
the pulse energy at the detector in the range of 10 pJ-1 nJ. Laser
intensity was monitored and recorded with a Ge photodiode
(Thorlabs, Det50B). IR pulses were focused onto the detector,
which is mounted in a high precision three-axis translation stage
(Thorlabs, PT3-Z8), with a x100 objective (Mitutoyo, M Plan Apo
SL) giving rise to a beam waist of 1 pm in linear regime. The TPA
carrier generation volume was measured by knife edge and Z-scan
techniques in a standard diode (CNM n-on-p), obtaining values of
0.8 and 13 pm (FWHM) respectively for the radius and length [2].

A transversal cross section of the HVCMOS pixel cell char-
acterized here is shown in Fig. 1 (left). This unirradiated HVCMOS
was glued on a PCB designed for transient current measurements,
and mounted for edge illumination (laser impinges perpendicu-
larly to the XY -plane, see Fig. 1 left). The structure measured was a
deep n-well without any embedded NMOS or PMOS transistors,
intended for optical test measurements, placed in one corner of
the silicon dice (buried in X - and Z-coordinates, according to mask
files). The current picked from the DNW was amplified (Cividec
C2-TCT) and recorded using a 2.5 GHz digital oscilloscope. The
whole equipment, except the lasers and filters, was isolated in a
custom-made Faraday cage, vented with dry air reducing the hu-
midity below 4%. Bias voltage was supplied via front-side implants
(P-wells surrounding every DNW), as suggested by the process
design rules. In addition to the diode contact to GND, analog and
digital grounds of the chip were shorted to a common GND, so that
the leakage current from all other deep N-wells of the chip could
bypass the diode. The detector was glued to the PCB using con-
ductive glue.

3. Experimental results

A three dimensional scan was realized in two steps. First, the
boundaries of the sensitive volume were located in the plane XY.
Then the laser was focused in Z-coordinate, finding the position
where the collected signal was at the maximum. Fig. 1 (center)
shows a collection charge map (10 ns integration time) as a
function of the position of the laser. The location of the implant
cannot be inferred from the total charge collection map, thus an
accurate determination of the depletion depth is not possible. The
size of the charge collecting volume, quoted as Full Width at Half
Maximum (FWHM), is 120 x25 um? in X and Y dimensions, that
is, a depletion width of 25 pm, clearly above the expected value.

Fig. 1 (right) shows an XY map of the collection time (time lapse
between the beginning and end of the signal, where the end of the
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signal is calculated as the time needed to accumulate 98% of the
total charge). A rectangular structure with calculated FWHM~95
x7 pm2 (location X € [0.02, 0.12] mm, Y ~0.012 mm in the col-
lection time map) is identified as the DNW. The implant is sur-
rounded by a region of very short collection times, identified as
the drift region (Y € [0.016, 0.026] mm), followed by a narrow
transition towards longer collection times (diffusion region). The
maximum collection time in this plot has been fixed to 20 ns. The
diode seems to be buried along the Y -coordinate since a region of
short collection time and non-zero collected charge extends below
the implant bottom border (Y < 0.01 mm). The actual thickness of
this region is, at this moment, not known precisely. Some effects
might contribute to an apparent charge collection in this region:
reflections of the laser on metal layers on top of the DNW can
couple light back to the active area. Photoelectric effect in the
same metal might act as a current injection source. Further ana-
lysis is required to quantify the importance of these contributions.

Transient currents at each of these regions are compared in
Fig. 2. At the drift region, the signal amplitude is high and the
collection time short, as corresponds to a depleted volume with
high electric field. At the implant, amplitude is smaller but the
signal is collected within 10 ns. There, a double peak is observed
which hints to a different current peaking time for electrons and
holes. Finally, the absence of electric field in the diffusion region
makes charge collection very slow. Recombination in this region
reduces the total collected charge.

Once the position of the implant is found, depletion can be
calculated taking the implant upper border (Y~0.016 in Fig. 1 right)
as a reference. Fig. 3 overlaps (in arbitrary units), the collection
time and collected charge (in 25 ns) profiles along the center of
the detector (X ~ 0.06 mm in Fig. 1). The position of the implant
(Y ~ 0.012 mm) is clearly seen in the time profile. After 25 ns, both
the implant and bulk collect all the charge. The distance, measured
from the rightmost edge of the implant, over which the collection
time is minimum, is considered as the depletion thickness. This is
shown in Fig. 4, as a function of voltage. For comparison, the
FWHM of the charge profile ( X ~ 0.06 mm) is also displayed. A
clear difference between the two depletion depth estimators is
observed. By fitting the  measured depletion to
w(V)(um) = 0.3/p( cm)V [10], the resistivity p of the bulk can be
calculated. The value found, p ~ 15Q cm, should be compared to
the nominal 10 Q cm.

To complete the three dimensional scan, the beam was pointed
at the center of the implant ((X, Y) = (0.06, 0.012 ymm in Fig. 1
(right)) and a vertical Z-scan was performed. Due to the absence of
linear absorption, the laser can be focused on buried structures
well inside the silicon dice, as it is the tested implant along the Z-
direction. The charge integrated in 8 ns along the Z-direction is
shown in Fig. 5. Due to the wider size of the beam along the
propagation direction the reconstructed implant size is the con-
volution of the implant with the beam. The calculated value is
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Fig. 1. Left: HVCMOS sketch. Center: charge collection map in 10 ns. Right: Collection time map. Measurements at 20C, —80 V.
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Fig. 2. Transient currents inside the DNW implant, depleted and diffusion regions
of an HVCMOS sensor.
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Fig. 3. Comparison (arbitrary vertical units) of collected charge profile (in 25 ns)
with the collection time profile.
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Fig. 4. Comparison of depletion depth calculated using charge profiles only (as in
Fig. 1 center) or collection time profiles only (Fig. 1 right).

therefore an overestimation of the actual beam depth along Z.
Taking into account that, due to the refraction index of Si, a shift in
air of AZ,;; corresponds to AZs; = ns; (1) AZy;; in Si, the reconstructed
depth of the implant is ~106 pm.

4. Conclusions

For the first time, the dimension and geometry of the space
charge region of a depleted CMOS pixel cell was accurately mea-
sured. This has been possible by measuring the collection time of
the carriers, enabling the location of the boundaries of the DNW
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Fig. 5. Collected charge (in 8 ns, room temperature, —80 V) when the beam focus
is moved vertically with respect to the detector.

implant and the determination of the transition between drift and
diffusion volumes. From the geometry of the space charge region
we can compute the effective doping concentration of the silicon
substrate, one of the main design parameters of the HVCMOS
technology under optimization.

The enabling technology for this achievement is a novel transient
current technique based on Two Photon Absorption (TPA-TCT), al-
lowing a submicron spatial resolution in an edge-TCT configuration.
TPA-TCT is the only transient current technique able to spatially re-
solve implants and to discriminate between drift and diffusion. This
is because in TPA, focused light generates photocarriers only in a
localized volume around the focus. The cross section of this volume is
below 1 pm. However, in SPA-TCT, carriers are generated uniformly
along the beam, therefore strong focusing only leads to a wide di-
vergence out of the focus, and thus worse spatial resolution.

The results presented here prove the suitability of TPA-TCT as a
high-resolution three dimensional probing tool for sensor
characterization.
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