selected highlights on the previous BESIII Collaboration meeting

Data taking plan (2018-2019)

As discussed and approved at the September P&S workshop 2018: about 7 months runtime

Finish J/ψ data taking (4 B, ~2.5 months)

 Continue XYZ scan (~3.9fb⁻¹), fill up remaining time

https://indico.ihep.ac.cn/event/8569/session/0/contribution/10/material/slides/0.pptx

Next Plan

- Scientific Linux 7 will be the main OS for BESIII
- Machine room upgrade
 - More space, more power challenge
- New resources will be ac
 - 1200 cpu cores
 - 1P Storage
- More HPC Support
- More remote sites suppo

Support Scientific Linux 5 via Container

- lxslc5.ihep.ac.cn: Retired in August
 - Quite old:
 - hardware: lxslc5.ihep.ac.cn had been running for 7+ years
 - Software:
 - No support from official site: no driver for new hardware
 - Security bug exist
 - Necessary for some physics analysis
- Container: Operating-system-level virtualization
 - Less overhead than virtual machine
 - Easy to be deployed
- Container is adapted to provide Scientific Linux 5 for BESIII user
 - Keeps almost the same environment as that of lxslc5

https://indico.ihep.ac.cn/event/8569/session/1/contribution/79/material/slides/0.pdf

machine learning/big data techniques on BESIII

Partial Wave Analysis Based on Spark – A Distributed In-Memory Computing Platform

Introduction to Spark

- What is Spark?
 - >A lightning-fast open-source unified analytics engine
 - ➤ Widely used by many IT companies to deal with big data on the Internet: Facebook, IBM, Uber, PayPal, Alibaba, JD.com
 - Also widely used in many scientific fields: hydrology, biology, health and life, remote sensing, and high energy physics

Novel Software Techniques on BESIII

Yao ZHANG

on behalf of BESIII offline software group

- How to improve the software performance, depress the systematic error
 - Further research of traditional algorithm
 - Machine/deep learning
- How to speed up data processing and physical analysis
 - GPU algorithms
 - Parallel simulation
 - HPC, (commercial) Cloud
 - Python ecosystem analysis

https://indico.ihep.ac.cn/event/8569/session/1/contribution/84/material/slides/0.pdf

Public lectures

• The particle zoo: particle physics around the year 1966

Particle Phy. The quark model

- Wolfgang Kuehn, Jt Today: the Standard Model (SM) of particle physics
 - · Particles and forces
 - · Experimental aspects
 - Summary

北京谱仪实验的昨天、今天和明天

李海波

中国科学院高能物理研究所

Introduction of Setting Upper Limits

Limin Gu¹, Lvcheng Xie²

¹Nanjing University, ²Peking University

BESIII Collaboration Meeting Wuhan University, November 2018

• How should we deal with the situations below? And Why?

BESIII white paper

- Goal:
 - Identify the most important physics in the future
 - The competitions
 - Priority of data taking?
 - finish in 2018
- Full document was ready on Nov. 13, 2018 (176 pages)
 - Internal review from reading groups on going
 - EB review (not much progress)
- International review some time next spring
- Submit for publication after review