
Introduction to Python

A Readable, Dynamic, Pleasant,
Flexible and Powerful Language

Amit Pathak
Institute of High Energy Physics
Chinese Academy of Sciences

January 25, 2019

1

Contents:
• Why Use Python?
• Running Python
• Types and Operators
• Basic Statements
• Functions
• Scope Rules (Locality and context)
• Some Useful Packages and Resources

2

Why Use Python?
• Python is object-oriented

Structure supports such concepts as polymorphism, operation overloading and
multiple inheritance.

• It’s Free (Open Source)
Downlaoding and Installing Python is free and easy
Source code is easily accessible
Free doesn’t mean unsupported! Online python is community is huge.

• It’s portable
Python runs virtually every major platform used today.
As long as you have a compatible Python interpreter installed, Python programs will
run in exactly the same manner, irrespective of platform.

• It’s Powerful
Dynamic typing
Built-in types and tools
Library utilities
Third party utilities (e.g. Numeric, NumPy, Scipy)
Automatic memory management

3

Why Use Python?
• It’s Mixable

Python can be linked to components written in other languages easily
Linked to fast, compiled code is useful to computationally intensive
problems.
Python is good for code steering and for merging multiple programs in

otherwise conflicting languages.
Python/C integration is quite common.

• It’s Easy to use
Rapid turnaround: no intermediate compile and link and steps as in C or C++
Python programms are compiled automatically to an intermediate form called
bytecode, which is interpreter then reads
this gives python the development speed of an interpreter without the
performance loss inherent in purely interpreted languages.

• It’s easy to learn
Structure and syntax are pretty intuitive and easy to grasp

4

Running Python
• How to call up a Python interpreter will vary a bit depending on

your platform, but in a system with a terminal interface, all you
need to do is type “python” into your command line.
Example:
$ python
>>> print ‘Amit Pathak’
Amit Pathak
>>> x = [0,1,2]
>>> x
[0,1,2]
>>> 2 +3
5
Python scripts can be written in text files with the suffix .py. The
scrips can be read into the interprter in several ways.

5

Running Python

• Examples:
$ python script.py
#This will simply execute thescript and return to the terminal
afterword.
$ python -i script.py
#The -i flag keeps the interpreter open after the script is finished
running.
$ python
>>>execfile(‘script.py’)
$python
>>> import script # DO NOT add the .py suffix. Script is amodule
here.

6

Types and Operators: Types of Numbers (1)
• Python supports several different numeric types

Integers:
• Examples: 0, 1, 231, -4252
• Integeres are Implemented as C longs
• Note: dividing an integer by another integer will return only integer part of

the quotient, e.g. typing 7/2 will yield 3.
Long Integers

• Examples: 9999999999999L
• Must end in either 1 of L
• Can be arbitrary long

Floating Point Numbers
• Examples: 0.0, 2.6, 1e10, 3.14e-12, 6.999E4
• Implemented as C doubles
• Division works normally for floating point numbers: 7./2. = 3.5
• Operations invloving both floats and integers will yield floats: 6.4 – 2 = 4.4

7

Types and Operators: Types of Numbers (2)
Octal Constants

• Examples: 0177, -01234
• Must start with leading 0

Hex Constants
• Examples: 0x9ff, 0X7AE
• Must start with a leading 0x or 0X

Complex Numbers
• Examples: 3+4j, 3.0+ 4.0j, 2J
• Must end in j or J
• Typing in the imaginary part first will return the complex number in the

order Re + Im J

8

Types and Operators: Operations on List(1)
• Indexing: L1 [i] , L2 [i] [j]
• Slicing: L3 [i:j]
• Concatenation:

>>> L1 = [0,1,2] ; L2 = [3,4,5]
L1 + L2
[0,1,2,3,4,5]

• Repetition:
>>> L1*3
[0,1,2,0,1,2,0,1,2]

• Appending:
>>> L1.append (3)
[0,1,2,3]

• Sorting:
>>> L3 = [2,1,4,3]
L3.sort ()
[1,2,3,4]

9

Types and Operators: Operations on List(2)
• Reversal:

>>> L4 = [4,3,2,1]
>>> L4.reverse ()
>>> L4
[1,2,3,4]

• Shrinking:
>>>del L4 [2]
>>> Lx [i : j] = []

• Index and Slice assignment:
>>> L1 [1] = 1
>>> L2 [1:4] = [4,5,6]

• Making a list of Integers:
>>> range (4)
[0,1,2,3]
>>> range (1,5)
[1,2,3,4]

10

Types and Operators: Tuples
• Tuples are contained in parentheses ()
• Tuples can contain numbers, strings, nested sub-tuples, or nothing.
• Examples: t1 = (0,1,2,3) , t2 = (‘zero’, ‘one’) , t3 = (0,1, (2,3), ‘three’, (‘four,

one’)) , t4 = ()
• Tuple indexing works just like string and list indeing.
• Tuples are immutable: individual elements can not be reassigned in

place.
• Concatenation:

>>> t1 = (0,1,2,3); t2 = (4,5,6)
>>> t1+t2
(0,1,2,3,4,5,6)

• Repetition:
>>> t1*2
(0,1,2,3,0,1,2,3)

11

Basic Statements: The if Statement
• If statements have the following basic structure:

inside the Interpreter # inside a script
>>> if condition: if condition:
 … action action
 …
>>>
Subsequent indented lines are assumed to be part of the if statement. The same
is true for most other types of python statements. A statement typed into an
interpreter ends once an empty line is entered, and a statement in a script ends
once an unindented line appears. The same is true for defining functions.
If statements can be combined with else if (elif) and else statements as follows:
if condition1: # if condition1 is true, execute action1
 action1
if condition2: # if condition1 is not true, but condition2 is, execute
 action2 #action2
else: # if neither condition1 nor condition2 is true

12

Basic Statements: The if Statement
Conditions in if statements may be combined using and & or statements
If condition1 and condition2:
 action1
if both condition1 and condition2 are true, execute action1
if condition1 or condition2:
 action2
if either condition1 or condition2 is true, execute action2
conditions may be expressed using the following operations:
< , <= , > , >= , ++ , != , in
Somewhat unrealistic example:
>>> x = 2; y = 3; L = [0,1,2]
>>> if (1<x<=3 and 4>y>=2) or (1==1 or 0!=1) or 1 in L:
… print ‘Amit Pathak’
…
Amit Pathak

13

Basic Statements: The for Statements
for statements have the following basic structure:

• for elements in t.p4trk:
 print('>>>>>', t.p4trk[5])
 print('0:electron, 1:muon, 2:pion, 3:kaon, 4:proton')
The item i is often used to refer to an index in a list, tuple, or array
Example:
>>> L = [0,1,2,3] #or, equivalently, range(4)
>>> for i in range (len(L)):
… L(i) = L(i)**2
…
>>>L
[0,1,4,9]

14

Basic Statements: The for Statements

The User may combine statements in a myriad of ways
Example:
>>> L = [0,1,2,3] #0r, equivalently, range(4)
>>> for i in range (len(L)):
… j = i/2
… if j – int(j) == 0.0:
… L[i] = L[i] + 1
… else: L[i] = -i**2
…
>>> L
[1,-1,3,-9]

15

Scope Rules
• Python employs the following scoping hierachy, in decreasing order of

breadth:
• Buil-in (Python)

Predefined names(len, open, execfile, etc.) and types
• Global (Module)

Names assigned at the top level of a module, or directly in the
interpreter

Names declared global in a function
• Local(Function)

Names assigned inside a function definition or loop
Example:
>>> a = 2 #a is assigned in the interpreter, so it’s global.
>>> def f(x): # x is in the function’s argument list, so it’s a local.
… y = x +a #y is only assigned inside the function, so it’s local
… return y #using the sa
…

16

Ø Histograms
Ø Tables
Ø Expressions
Ø Files and directories
Ø Drawing

Units and types
Canvases
Renderers
Layouts

Ø Plotting
Ø Lorentz geometry and kinematics

Reference Frames
vectors
Transformations and Frames

Ø Particle properties

source: http://indetermi.net/pyhep/dl/0.8.1/pyhep-0.8.1.pdf
17

18

