

Selective Separation of Heavy Metals Based on Metal-Biomass Interactions

金属-生物质相互作用与选择性分离

杨婷 陈明丽 王建华

Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China 东北大学 理学院 分析科学研究中心

The National Symposium on Metallomics (NSM2019), 2019.1.11-13, 北京

Outline

Background

Metal-biomass interactions for heavy metals separation

Bacillus subtilis-hydrous ferric oxide for As(V) adsorption 枯草芽孢杆菌-水合氧化铁复合物:选择性吸附砷(V)

Metallothionein in selective adsorption of Cd 金属硫蛋白用于镉的选择性吸附分离

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

Conclusions

high sorption capacity

N-acetyl, amide, phosphate, hydroxyl, ether, carboxylate, thiol

酰胺基,氨基,磷酸基,羟基, 醚,羧基,硫醇

Selective adsorption of metal species

Outline

Background

Metal-biomass interactions for heavy metals separation

Bacillus subtilis -hydrous ferric oxide for As(V) adsorption 枯草芽孢杆菌-水合氧化铁复合物:选择性吸附砷(V)

Metallothionein in selective adsorption of Cd 金属硫蛋白用于镉的选择性吸附分离

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

Conclusions

Environ. Sci. Technol, 2012, 46, 2251-2256 Anal. Chem, 2009, 81,1291-1296

Bacillus subtilis decoration by hydrous ferric oxide for arsenic(V) adsorption

*** Arsenic: highly correlated with iron**

Iron has a high affinity to arsenic.

Arsenic in iron containing matrix: arsenopyrite, biotite, clays.....

X Aims at...

A selective sorbent for arsenic:

high iron-arsenic affinity + potential selectivity of biological cells.

※ Fe(III) loading on *Bacillus subtilis* provides unusual selectivity and sorption capacity to As(V)

Bacillus subtilis (枯草芽孢杆菌) is treated in Fe³⁺. Fe sorption at non-growth conditions (no nutrient). The ferrated bacteria: *Fe-bac*.

B. subtilis sorbs As(V) and As(III) at same level;
Fe loading results in discrimination between As(V) and As(III);
Increase of Fe content improves selectivity to As(V)

Fe loading on *bacteria* as a function of [Fe³⁺]

Blue: *Langmuir* behavior for As(V) binding by *Fe-bac*.

Red: Linear plot derives sorption capacity (87.6 μmol/g, pH 3).

Fast sorption: 20 ppb iAs in 2 min (>90%).

	Native <i>B</i>	e <i>B. subtilis</i> Fe-loaded <i>B. subtilis</i> (0.6% w/w		btilis (0.6% w/w)	At pH 3. As(V) sorption
pН	As(III)	As(V)	As(III)	As(V)	greatly improved: high
-	Q _{max} μmol/g	Q _{max} μmol/g	Q _{max} μmol/g (mol As/mol Ee)	Q _{max} μmol/g (mol As/mol Ee)	selectivity for As(V).
3	36.9±2.1	22.8±0.1	~0	87.6±1.0	At pH 10, As(V) capacity >11 times higher than
0		21.4+1.2	127±1	(0.78±0.01) 172±4	native <i>bac</i> .
8	08.0±2.2	31.4±1.2	(1.1±0.01)	(1.6±0.03)	Small amount Fe greatly changes the selectivity
10	15.3±0.7	11.9±0.1	110±5.4 (1.0±0.04)	137±3.3 (1.2±0.03)	and sorption capacity

X The nature of As binding by *Fe-B. subtilis (Fe-bac)*

80

60

pH-dependent selectivity to As(V) by Fe-bac

pH dependent sorption of iAs by HFO Environ.Sci.Technol. 2003,37,4182

% As Sorbed 40 20 As(III) with PO₄³⁻ 0 9 5 6 8 10 4 pН

As(V) with PO₄³⁻

Similar sorption behaviors by *Fe-bac* with HFO (with PO_4^{3-}): HFO on *B.subtilis*? Fe-O-As?

Sorption competition from the PO₄³⁻ group

ATR-FTIR

Isomer Shift (IS)

Better electron density symmetry Quadrupole Split (QS)

Fe-bac: amorphous nanomaterial, HFO as separate phase.

Fe(III) sorption and HFO precipitation on cell membrane is a continuum.

Upon As(V) exposure, *bac* cemented together, via -Fe-O-As-O-Fe- bridges.

K Fe-bac selectivity to As(V): iAs speciation

pH-dependent selectivity to As(V) against As(III) by *Fe-bac*

Selectivity As(V)/As(III):: ~300

Selective sorption of As(V), pH 3 0.8M HNO₃ elution ETAAS quantification

Convert As(III) to As(V) selective sorption at pH 3 0.8M HNO₃ elution ETAAS

iAs speciation by difference

※ Performance	Sample volume	1 mL
	Linear range	0.30-2.00 μg L ⁻¹
	Detection limit (3σ, n=11)	0.08 μg L ⁻¹
	RSD (1 μg L ⁻¹ , n=9)	4%
	Enrichment factor	9.2
	Retention efficiency	95.6%

× Validation

Sample	As(III) (µg L⁻¹)	As(V) (μg L ⁻¹)	Spiked As(V)	Recov. (%)
GuanMen Mountain Spring (BenXi)	0.186 ± 0.091	0.383 ± 0.104	0.5	93±3
QiPan Mountain Spring (ShenYang)	0.262 ± 0.074	0.849 ± 0.046	0.5	95±4
GBW 09101 Human hair	Certified total 0.58±0.05*	Found total 0.54±0.12*	*µg	g -1

Outline

Background

Metal-biomass interactions for heavy metals separation

Bacillus subtilis -hydrous ferric oxide for As(V) adsorption 枯草芽孢杆菌-水合氧化铁复合物:选择性吸附砷(V)

Metallothionein in selective adsorption of Cd 金属硫蛋白用于镉的选择性吸附分离

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

Conclusions

J. Mater. Chem, 2012, 22, 21909-21916 TrAC-Trends Anal Chem, 2015, 66, 90-102 J. Anal. At. Spectrom, 2015, 30, 929-935

Metallothionein in selective adsorption of Cd 金属硫蛋白用于镉的选择性吸附分离

Metallothionein decorating graphene oxide (GO)

Cadmium adsorption by SmtA-GO/cytopore

Sorption capacity

Sorption isotherm

Fitting *Langmuir* adsorption model

Improvement on sorption capacity with respect to GO/cytopore

Selectivity

HSAB principle

Cations	Tolerance SmtA-GO/cyto (μg/L)	Tolerance GO/cyto (μg/L)	Selectivity improvement (-fold)	Hard acid H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ Hard base
K+	3,000,000	100	30,000	 OH⁻, O²⁻, ROH, NO₃⁻, PO₄³⁻, SO₄²⁻ Soft acid
Na+	1,500,000	50	30,000	Ag ⁺ , Cd ²⁺ , Pd ²⁺ , Hg ²⁺
Ca ²⁺	50,000	1	50,000	Soft base
Mg ²⁺	40,000	0.05	800,000	Borer acid
Co ²⁺	100	0.5	200	Co ²⁺ , Ni ²⁺ , Zn ²⁺ , Cu ²⁺ , Pb ²
Al ³⁺	50	1	50	SmtA: 9 cysteines,
Cu ²⁺	50	0.05	1000	-SH rich soft base
Ni ²⁺	40	1	40	Cd ²⁺ : soft acid
Zn ²⁺	20	1	20	
20-8	00,000 fold in	nproveme	ent on	Highly selective

the tolerance of metal cations

Analytical performance

Sample volume	1000 μL
Eluent volume	50 μL
LOD (3σ, n=7)	1.2 ng/L
Linear range	5-100 ng/L
Enrichment factor	14.6

Sample analysis

CRMs		Certified (µg/g)	Found (µg/g)
GBW 07404 (so	il)	0.35±0.06	0.35±0.07
GBW 08608 (na	ture water)	11.57±0.72	11.09±0.67
Sample	Found (μg/L)	Spike (µg/L)	Rec. (%)
Snow water	0.069±0.007	0.240	96
Rain water	0.139±0.001	0.120	101
Spring water	0.024±0.005	0.040	99
Sea water	0.676±0.039	0.600	104

Metallothionein isoforms in the adsorption of Cd

Mammalian MT (rMT)

- 20 cys out of 61 amino acids (33%)
- No aromatic amino acids/His
- α domain: Me4Cys11 cluster
 β domain: Me3Cys9 cluster

Cyanobacterium MT (*SmtA*)

- 9 cys out of 56 amino acids (16%)
- Contains His residue
 - One domain
 Form Me₄Cys₉His₂ with Me²⁺

MTs immobilization on SiO₂ (Mammalian MT, *SmtA*, L-cysteine)

pH dependent sorption

Adsorption kinetics

$pH\downarrow$, sorption decrease

Proton competition

SmtA

more pH dependent low cys content *vs* rMT

Adsorbent	k₂ 10 ⁵ g mg⁻¹ h¹	q _e 10 ⁻⁴ mg g ⁻¹	r ²
L-cys@SiO ₂	1.34	1.83	0.9994
rMT@SiO ₂	1.22	1.88	0.9989
SmtA@SiO ₂	0.45	2.36	0.9995

pseudo-second-order kinetics model
Adsorption efficiency: SmtA > rMT

Breakthrough

Sorption isotherms

Capacity expected

rMT >*SmtA*. rMT: binds 7 bivalent metals, SmtA: binds 4.

Surface binding & Cd accommodation in SmtA framework.

rMT: steric structure is disrupted. *SmtA*: intact, 6-His tags co-expression. Remains chelating cavity

Dynamic adsorption rate

SmtA < rMT < L-cys

Dynamic sorption capacity

L-cys@SiO ₂	0.72 µg g⁻¹
rMT@SiO ₂	1.31 µg g⁻¹
SmtA@SiO ₂	1.65 µg g⁻¹

L-cys < rMT < SmtA

Adsorbent	Q _{max} /mg g ⁻¹	K _d /mg L ⁻¹	r ²
L-cys@SiO ₂	3.09	64.11	0.9889
rMT@SiO ₂	13.70	135.08	0.9964
SmtA@SiO ₂	18.94	219.96	0.9891

Adsorption capacity

L-cys@SiO₂<rMT@SiO₂<SmtA@SiO₂

300

rMT: Cd²⁺ chelating "cavity" disrupted.

Outline

Background

Metal-biomass interactions for heavy metals separation

Bacillus subtilis -hydrous ferric oxide for As(V) adsorption 枯草芽孢杆菌-水合氧化铁复合物:选择性吸附砷(V)

Metallothionein in selective adsorption of Cd 金属硫蛋白用于镉的选择性吸附分离

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

Conclusions

Appl. Spectrosc. Rev, 2016, 51, 148-161 ACS Appl. Mater. Interfaces, 2015, 7, 21287-21294

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Natural metalloprotein

Limited species

Phage display library screening

Any targets

Phage display peptide library

A foreign gene incorporating into a phage to display a peptide on surface. Various peptides make up a phage library.

Phage library

By repeated biopanning with target, phages with peptide ligands for target is selected

Peptide screening procedure - Cr(III) as model target

Peptide sequence

No	Sequence	Property	-OH		
1	ATNKITK	nopbnob	2		
2	SKVGYPT	obnnono	3		
3	YKASLIT	ohnonno	3		
N	on-polar ami	no acidpe	ptide		
fo	lding by hyd	rophobic			
in	interaction:				
Formation of favorable spatial					
st	ructure for C	r(III) bindin	g.		
9	IQMTDIA	npnoann	1		
10	SRHLHEW	obbnban	1		

11 APVTSMK nnnoonb 2

n: non-polar amino acid;

- o: -OH containing amino acid;
- p: polar and uncharged amino acid;
- a: acidic/polar amino acid;
- b: basic/polar amino acid

HSAB principle

Cr(III): Hard acid, -OH: Hard base

ELISA results

Cr binding phage - Cr(III) adsorption

Phage immobilization

pH dependent sorption

pH↓, sorption ↓ Cr(VI) pre-removed by cytopore

Selectivity

Co-existing ions	Tolerance ratio
K+	2,000,000
Na+	400,000
Ca ²⁺	200,000
Mg ²⁺	40,000
Al ³⁺	320
Fe ³⁺	400
Cu ²⁺	400
Zn ²⁺	200
Pb ²⁺	4,000
Ni ²⁺	2,000
Cd ²⁺	200
CI-	400,000
NO ₃ -	3,180,000
HCO ₃ -	400,000
H ₂ PO ₄ ⁻	200,000

Cr(III) binding phage - Cr(III) adsorption

Parameters

PhageNo. 3Peptide sequenceYKASLITpH7.0Sorption time2 hEluent0.1 M HNO3DetectorICPMS

Analytical performance

Sample volume	4000 μL
Eluent volume	400 μL
RSD (250 ng/L, n=7)	3.6%
Linear range	50-500 ng/L
Enrichment factor	7.1

Validation

Sample	Found / μg L ⁻¹		Spiked / µg L ⁻¹		Found / µg L ⁻¹		Recov. / %	
	Cr(III)	Cr(VI)	Cr(III)	Cr(VI)	Cr(III)	Cr(VI)	Cr(III)	Cr(VI)
Tap water	0.06±0.04	0.13±0.03	0.10	0.10	0.14±0.05	0.26±0.04	98	103
Snow water	0.12±0.05	0.08±0.03	0.10	0.10	0.22±0.02	0.19±0.02	100	105
GBW08608	Certified 31.4±2.0	Found 31.9 ± 5.0						

Outline

Background

Metal-biomass interactions for heavy metals separation

Bacillus subtilis -hydrous ferric oxide for As(V) adsorption 枯草芽孢杆菌-水合氧化铁复合物:选择性吸附砷(V)

Metallothionein in selective adsorption of Cd 金属硫蛋白用于镉的选择性吸附分离

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

Conclusions

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

亲汞噬菌体筛选

1) 金属离子固定化

螯合于磁珠IDA-γ-Fe₂O₃ Zn(II), Cu(II), Fe(III), Cd(II)

2) 负筛选

保留上清液中的噬菌体

3) 正筛选

保留与磁珠结合的噬菌体, 洗脱、扩增

4) 测序

纳米金原位生长

汞结合肽序列

P1	Ν	L	S	F	Ν	Y	L
P2	н	Н	т	F	Q	S	т
P 8	Ν	V	S	т	L	V	Н
P 9	т	S	Υ	G	R	S	S

19.8 nm

纳米金-噬菌体 交联复合物

TEM

灵敏度与选择性

LOD 80 nmol/L (3σ/k, n=5)

干扰耐受能力

干扰 离子	Tolerance level /µM						
	噬菌体 - AuNPs	Bismuthiol II - AuNPs	Dithioerythritol - AuNPs	Tween 20 - AuNPs	T-Hg²+-T - AuNPs	MPA - AuNPs	
K+	100,000	-	-	100	-	-	
Na+	150,000	120	-	100	-	-	
Mg ²⁺	30,000	120	600	100	100	100	
Ca ²⁺	1,000	120	600	100	100	100*	
Al ³⁺	30,000	120	-	100	-	100	
Fe ³⁺	300	120	600	100	-	100	
Cu ²⁺	500	120	600	100	100	100	
Ni ²⁺	1,000	120	600	100	100	100	
Co ²⁺	500	120	600	100	100	100	
Cr ³⁺⁻	6,000	4.8	-	100	-	100*	
Cd ²⁺	1,000	48	600	-	100	100*	
Zn ²⁺	2,000	120	600	100	100	100	
Ref.	本研究	[1]	[2]	[3]	[4]	[5]	

1. J. Duan, M. Yang, Y. Lai, J. Yuan, J. Zhan, Anal Chim Acta 2012, 723, 88-93.

2. Y.-R. Kim, R. K. Mahajan, J. S. Kim, H. Kim, ACS Appl. Mater. Interfaces 2010, 2, 292-295.

3. C.-Y. Lin, C.-J. Yu, Y.-H. Lin, W.-L. Tseng, Anal. Chem. 2010, 82, 6830-6837.

4. X. Xu, J. Wang, K. Jiao, X. Yang, Biosens. Bioelectron. 2009, 24, 3153-3158.

5. C. C. Huang, H. T. Chang, Chem Commun 2007, 1215-1217.

环境水样中汞离子含量分析

Sample	Spiked (µM)	Found (<u>µM</u>)	Recov.(%)	RSD% (n=3)
	2.0	2.46	123.0	4.9
	3.0	2.90	96.5	4.4
Snow	4.0	3.51	87.8	3.6
Snow	5.0	4.55	91.1	7.7
	6.0	6.01	100.2	10.5
	7.0	7.47	106.7	1.5
	1.0	1.07	107.0	0.9
	2.0	1.89	94.6	6.3
	3.0	2.87	95.8	8.9
River water	4.0	4.24	106.0	3.4
	5.0	5.48	110.0	0.4
	6.0	6.40	106.6	1.7
	7.0	6.70	95.7	0.7

SnowLOD 83 nmol/LLinear: 2.0-7.0 μmol/LRiver waterLOD 80 nmol/LLinear: 1.0-7.0 μmol/L

Outline

Background

Metal-biomass interactions for heavy metals separation

Bacillus subtilis decorated by hydrous ferric oxide for arsenic(V) adsorption 枯草芽孢杆菌-水合氧化铁复合物:选择性吸附砷(V)

Cr(III) binding phage screening for Cr(III) adsorption 噬菌体文库筛选Cr(III)结合肽:选择性吸附Cr(III)

Growing AuNPs on Hg²⁺-binding phage for Hg sensing 亲汞噬菌体原位生长纳米金: Hg²⁺传感

Conclusions

Biological cells: alternative for selective sorption of heavy metals

The wide choice of functional groups on cell surface provides favorable selectivity to metal species.

Metal binding phage screening:

Universal approach for developing highly selective adsorbents for metals.

National Natural Science Foundation, China Northeastern University, China

Thank you for your attention

