Study of $\eta_c \rightarrow \Lambda \overline{\Lambda}$ in J/ ψ radiative decay

Guangrui LIAO¹, Ronggang PING² 1.GXNU 2.IHEP Jan. 8th, 2019 Charmonium group meeting

OUTLINE

- Motivation
- Data sets and MC samples
- Event selection
- Background study
- Summary

Motivation

- Heavy $q\bar{q}$ bound-state decays are supposed to be a good testing ground for perturbative QCD, such as η_c , J/ ψ and so on.
- Hadronic decays of η_c have been studied by MARKIII, BESII/III, and other experiments. The branching fractions of η_c still have large errors. Such as:

$$\eta_c \rightarrow \begin{cases} \Lambda \overline{\Lambda} : (1.09 \pm 0.24) \times 10^{-3} \\ \Sigma^+ \overline{\Sigma}^- : (2.1 \pm 0.6) \times 10^{-3} \\ \vdots \end{cases}$$

Data sets and MC sample

- Data: 1.31×10⁹ (2009 and 2012), 4.60×10⁹ (2017 and 2018)
- Inclusive MC:~100 million
- Exclusive MC:
- $J/\psi \to \gamma \eta_c, \quad \eta_c \to \Lambda \overline{\Lambda}, \quad \Lambda \overline{p} \pi^+, \quad \overline{\Lambda} p \pi^-$ $J/\psi \to \Lambda \overline{\Lambda}, \quad \gamma \Lambda \overline{\Lambda}, \quad \pi^0 \Lambda \overline{\Lambda}, \quad \overline{\Sigma}^0 (\gamma \overline{\Lambda}) \Lambda + c.c, \cdots$
- Boss version: 7.0.3

Event selection

• Initial selection

 \triangleright Charged track : N_{good} = 4 with net Charge = 0 1) No requirements for Vz and Vr 2) PID is used to identify proton and pion. 3) Λ reconstruction: secondary-vertex reconstruction \succ Neutral track: N_y ≥ 1 1) $E_{\gamma} > 25 \text{ MeV (Barrel)}, E_{\gamma} > 50 \text{ MeV (End cap)}$ 2) $\theta(\gamma, \overline{p}) > 30^{\circ}, \theta(\gamma, p_{\gamma}, \pi^{\pm}) > 20^{\circ}$

> The 4C kinematic fit ($J/\psi \rightarrow \gamma \Lambda \overline{\Lambda}$ hypothesis)

Event selection

• Further selection

• $S / \sqrt{S + B}$ is used to optimize the selection

•
$$\chi^2 < 30$$

• $\left| M_{p\pi} - 1.1158 \right| < 0.008 \text{ GeV/c}^2$

Event selection

• Further selection

• $S / \sqrt{S + B}$ is used to optimize the selection

No.	decay chain	final states	iTopo	nEvt	nTot
0	$J/\psi \rightarrow \bar{\Lambda}\gamma\Lambda, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+, \ \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	0	1832	1832
1	$J/\psi \rightarrow \gamma \eta_c, \eta_c \rightarrow \bar{\Lambda}\Lambda, \bar{\Lambda} \rightarrow \bar{p}\pi^+, \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	1	62	1894
2	$J/\psi \rightarrow \bar{\Lambda}\Sigma^{0}, \ \bar{\Lambda} \rightarrow \bar{p}\pi^{+}, \ \Sigma^{0} \rightarrow \gamma\Lambda, \ \Lambda \rightarrow \pi^{-}p,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	2	32	1926
3	$J/\psi \rightarrow \bar{\Sigma}^0 \Lambda, \ \bar{\Sigma}^0 \rightarrow \bar{\Lambda}\gamma, \ \Lambda \rightarrow \pi^- p, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	3	26	1952
4	$J/\psi \rightarrow \bar{\Sigma}^0 \Sigma^0, \ \bar{\Sigma}^0 \rightarrow \bar{\Lambda}\gamma, \ \Sigma^0 \rightarrow \gamma\Lambda, \ \Lambda \rightarrow \pi^- p, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+,$	$J/\psi \rightarrow \gamma \gamma p \pi^+ \pi^- \bar{p}$	4	17	1969
5	$J/\psi \rightarrow \bar{\Lambda}\Lambda, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+, \ \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow p\pi^+\pi^-\bar{p}$	6	14	1983
6	$J/\psi \rightarrow \bar{\Lambda}\pi^0\Lambda, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+, \ \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow \gamma \gamma p \pi^+ \pi^- \bar{p}$	12	2	1985
7	$J/\psi \rightarrow \bar{\Lambda}\pi^-\Sigma^+, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+, \ \Sigma^+ \rightarrow \gamma p,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	7	1	1986
8	$J/\psi \rightarrow \bar{\Sigma}^- \pi^+ \Lambda, \ \bar{\Sigma}^- \rightarrow \bar{p}\gamma, \ \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	8	1	1987
9	$J/\psi \rightarrow \bar{\Sigma}^- \Sigma^{*+}, \ \bar{\Sigma}^- \rightarrow \bar{p}\pi^0, \ \Sigma^{*+} \rightarrow \pi^+\Lambda, \ \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow \gamma \gamma p \pi^+ \pi^- \bar{p}$	9	1	1988
10	$J/\psi \rightarrow \gamma \eta_c, \ \eta_c \rightarrow \bar{p}\pi^-\pi^+ p,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	10	1	1989
11	$J/\psi \rightarrow \bar{\Lambda}\Sigma^{*0}, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+, \ \Sigma^{*0} \rightarrow \pi^0\Lambda, \ \Lambda \rightarrow \pi^- p,$	$J/\psi \rightarrow \gamma \gamma p \pi^+ \pi^- \bar{p}$	11	1	1990
12	$J/\psi \rightarrow \bar{\Sigma}^{*-}\Sigma^+, \ \bar{\Sigma}^{*-} \rightarrow \bar{\Lambda}\pi^-, \ \Sigma^+ \rightarrow \gamma p, \ \bar{\Lambda} \rightarrow \bar{p}\pi^+,$	$J/\psi \rightarrow \gamma p \pi^+ \pi^- \bar{p}$	5	1	1991
13	$J/\psi \rightarrow \bar{\Delta}^{++}\pi^0 \Delta^{++}, \ \bar{\Delta}^{++} \rightarrow \bar{p}\pi^-, \ \Delta^{++} \rightarrow \pi^+ p,$	$J/\psi \rightarrow \gamma \gamma p \pi^+ \pi^- \bar{p}$	13	1	1992

Main background

Table 1:

 $J/\psi \rightarrow \Lambda \overline{\Lambda}, \pi^0 \Lambda \overline{\Lambda}, \overline{\Sigma}^0(\gamma \overline{\Lambda}) \Lambda + c.c, \Sigma^0(\gamma \Lambda) \overline{\Sigma}^0(\gamma \overline{\Lambda}), \overline{\Lambda}(1520) \Lambda + c.c$

1.Red dot: data 3.Blue Hsit. : $J/\psi \rightarrow \Lambda \overline{\Lambda}$ **5.Purple Squre:** $J/\psi \rightarrow \pi^0 \Lambda \overline{\Lambda}$ **7.Green Anti-triangle:** $J/\psi \rightarrow \Sigma^0 \overline{\Lambda}$ **9.Green star:** $J/\psi \rightarrow \Lambda (1520) \overline{\Lambda} + c.c$ 2.Black hist.: $\eta_c \rightarrow \Lambda \overline{\Lambda}$ 4.Green Hist. : $J/\psi \rightarrow \gamma \Lambda \overline{\Lambda}$ 6.Blue Triangle: $J/\psi \rightarrow \overline{\Sigma}^0 \Lambda$ 8.Black Circle: $J/\psi \rightarrow \overline{\Sigma}^0 \Sigma^0$

1.Red dot: data 3.Blue Hsit. : $J/\psi \rightarrow \Lambda \overline{\Lambda}$ **5.Purple Squre:** $J/\psi \rightarrow \pi^0 \Lambda \overline{\Lambda}$ **7.Green Anti-triangle:** $J/\psi \rightarrow \Sigma^0 \overline{\Lambda}$ **9.Green star:** $J/\psi \rightarrow \Lambda (1520) \overline{\Lambda} + c.c$ 2.Black hist.: $\eta_c \rightarrow \Lambda \overline{\Lambda}$ 4.Green Hist. : $J/\psi \rightarrow \gamma \Lambda \overline{\Lambda}$ 6.Blue Triangle: $J/\psi \rightarrow \overline{\Sigma}^0 \Lambda$ 8.Black Circle: $J/\psi \rightarrow \overline{\Sigma}^0 \Sigma^0$

Helicity angular distribution

Summary

- Preliminary study of $\eta_c \rightarrow \Lambda \overline{\Lambda}$
 - 1) Selection Optimization: final efficiency is 12.13%.
 - 2) Background study:

main contribution from $J/\psi \rightarrow \Lambda \overline{\Lambda}$, $\gamma \Lambda \overline{\Lambda}$ (including the resonance, such as $\Lambda(1520)$, Σ^0 and so on) and $\pi^0 \Lambda \overline{\Lambda}$.

3) Helicity angular distribution: MC and data are consistent to each other within η_c mass window.

- Next work:
 - 1) Fixed the selection
 - 2) Fitting the mass spectrum of $\Lambda\bar{\Lambda}$

Back up

J/ψ->⊼(1520)∆ χ²