Measurement of the $\Lambda_c^+ \rightarrow pK^-\pi^+$ Decay Asymmetry at $\sqrt{s} = 4.6$ GeV

Hongwei Wen¹ Bin Zhong¹ Ronggang Ping²

1. Nanjing Normal University

2. Institute of High Energy Physics

Outline

- ➤Motivation
- ≻Data set
- ➤Event selection
- ➤Background analysis
- ➤Final selection
- ➤Data analysis result
- ≻Toy MC test
- ➤Summary and outlook

Motivation

➢It has long been known that hyperon nonleptonic decays have played an important role in understanding CP violation in particle physics. The observable of CP asymmetry is defined by $A_Y = \frac{\alpha_Y + \alpha_{\overline{Y}}}{\alpha_Y - \alpha_{\overline{Y}}}$. Under CP transformation, $\alpha_Y = -\alpha_{\overline{Y}}$ if CP is conserved. This also means that we study the problem of CP violation by measuring α_Y and $\alpha_{\overline{Y}}$. In the past few weeks, I have measured the value of $\alpha_{\Lambda_c^+}$ in the process of $\Lambda_c^+ \to pK^-\pi^+$, which will be the content of my report next.

Data Set

➢Boss Version:

• Analysis Environment: Boss 7.0.3;

≻Data Sets:

- 4600MeV 586.9pb-1
- Run No. 35227~36213
- ►Inclusive MC:
 - 703-MC 4600MeV hadrons

≻Signal MC:

- 1M $\Lambda_c^+ \rightarrow p K^- \pi^+$ for signal analysis
- 1M $\overline{\Lambda}_c^- \rightarrow \overline{p}K^+\pi^-$ for charge conjugation analysis
- (The MC events generator is KKMC)

Event Selection

➤Good charged Tracks

- + $|V_z| < 10$, $|V_r| < 1$, $|\cos \theta| < 0.93$
- $N_{good} = 3$

≻Single tag:

- $\Lambda_c^+ \longrightarrow pK^-\pi^+$, $\overline{\Lambda}_c^- \longrightarrow anything$
- $\overline{\Lambda}^-_c \to \overline{p} K^+ \pi^-$, $\Lambda^+_c \to anything$

≻PID

- Proton: $Prob(p) = \max(Prob(p), Prob(K), prob(\pi));$
- Kaon: $Prob(K) = \max(Prob(p), Prob(K), prob(\pi));$
- Pion: $Prob(\pi) = \max(Prob(p), Prob(K), prob(\pi));$

\succ After these selection m_{BC} and ΔE spectrum as follow.

- We can see the obvious background events in above distributions.
- To select the Λ_c^+ candidate, we performed relatively loose selection criteria on the ΔE and m_{BC} .(quote from Panyue's memo)
- Apply the cut criteria
 - $m_{BC}\epsilon(2.25,2.30)GeV$
 - $|\Delta E| < 0.1 \text{GeV}$

 $\succ m_{BC}$ distribution

$\succ \Delta E$ distribution

> After the previous selection , we get m_{BC} and ΔE distribution as above.

- As we can see that there is still a lot of background events in the distribution of m_{BC} .
- In this case, we will give specific solution in the background research below.

Background analysis

With above selection criteria, the scatter plot of ΔE versus m_{BC} for the selected candidate are shown as follow.

The distribution of m_{BC} using cocktail MC samples as follow

Through the topology analysis, we can see primary background decay chains as follow.

No.	decay chain	final states	iTopo	nEvt	nTot
0	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Lambda}K^- a_2^0 p, \ \bar{\Lambda} \to \bar{p}\pi^+, \ a_2^0 \to \pi^- \rho^+, \ \rho^+ \to \pi^0 \pi^+,$	$\gamma^* \rightarrow \gamma \gamma \gamma p \pi^+ \pi^+ \pi^- K^- \bar{p}$	623	270	270
1	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Delta}^{++} K^- K^+ \Delta^{++}, \ \bar{\Delta}^{++} \to \bar{p}\pi^-, \ \Delta^{++} \to \pi^+ p,$	$\gamma^* \rightarrow \gamma p K^+ \pi^+ \pi^- K^- \bar{p}$	229	242	512
2	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Lambda}K^-pa_1^0, \ \bar{\Lambda} \to \bar{p}\pi^+, \ a_1^0 \to \pi^-\rho^+, \ \rho^+ \to \pi^0\pi^+,$	$\gamma^* \rightarrow \gamma \gamma \gamma p \pi^+ \pi^+ \pi^- K^- \bar{p}$	10	210	722
3	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Lambda}K^- p b_1^0, \ \bar{\Lambda} \to \bar{p}\pi^+, \ b_1^0 \to \pi^0 \omega, \ \omega \to \pi^- \pi^0 \pi^+,$	$\gamma^* \rightarrow \gamma \gamma \gamma \gamma \gamma \gamma p \pi^+ \pi^+ \pi^- K^- \bar{p}$	369	198	920
4	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Delta}^{++} K^- \pi^+ K^+ \Delta^+, \ \bar{\Delta}^{++} \to \bar{p}\pi^-, \ \Delta^+ \to \pi^0 p,$	$\gamma^* \rightarrow \gamma \gamma \gamma p K^+ \pi^+ \pi^- K^- \bar{p}$	457	196	1116
5	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Lambda}K^-pa_1^0, \ \bar{\Lambda} \to \bar{p}\pi^+, \ a_1^0 \to \rho^-\pi^+, \ \rho^- \to \pi^-\pi^0,$	$\gamma^* \rightarrow \gamma \gamma \gamma p \pi^+ \pi^+ \pi^- K^- \bar{p}$	96	195	1311
6	$\gamma^* \to \gamma \gamma^*, \ \gamma^* \to \bar{p}K^- f_2(1270)K^+ p, \ f_2(1270) \to \pi^- \pi^+,$	$\gamma^* \rightarrow \gamma p K^+ \pi^+ \pi^- K^- \bar{p}$	192	190	1501
7	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Delta}^{++} K^- \pi^0 K^+ \Delta^{++}, \ \bar{\Delta}^{++} \to \bar{p}\pi^-, \ \Delta^{++} \to \pi^+ p,$	$\gamma^* \rightarrow \gamma \gamma \gamma p K^+ \pi^+ \pi^- K^- \bar{p}$	619	168	1669
8	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{p}K^-K^+pa_1^0, \ a_1^0 \to \pi^-\rho^+, \ \rho^+ \to \pi^0\pi^+,$	$\gamma^* \rightarrow \gamma \gamma \gamma p K^+ \pi^+ \pi^- K^- \bar{p}$	279	168	1837
9	$\gamma^* \to \gamma \gamma^*, \ \gamma^* \to \bar{\Lambda} K^- K^- K^+ p, \ \bar{\Lambda} \to \bar{p} \pi^+,$	$\gamma^* \rightarrow \gamma p K^+ \pi^+ K^- K^- \bar{p}$	64	150	1987
10	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{p}K^-\pi^0\pi^+K^0p, \ K^0 \to K_S, \ K_S \to \pi^-\pi^+,$	$\gamma^* \rightarrow \gamma \gamma \gamma p \pi^+ \pi^+ \pi^- K^- \bar{p}$	1018	140	2127
11	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to \bar{\Lambda}K^- pb_1^0, \ \bar{\Lambda} \to \bar{n}\pi^0, \ b_1^0 \to \pi^0\omega, \ \omega \to \pi^-\pi^0\pi^+,$	$\gamma^* \rightarrow \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma p \pi^+ \pi^- K^- \bar{n}$	113	120	2247
12	$\gamma^* \to \gamma\gamma^*, \ \gamma^* \to a_1^- \bar{n} K^- K^+ p, \ a_1^- \to \pi^- \rho^0, \ \rho^0 \to \pi^- \pi^+,$	$\gamma^* \rightarrow \gamma p K^+ \pi^+ \pi^- \pi^- K^- \bar{n}$	400	120	2367

We can see that the number of events in each decay chain the difference is not obvious, so I fail to given a reasonable background description.

According to truth march method I get signal events and nonsignal events, and the m_{BC} distribution as follow.

From this picture we can see the clear signal and the background shape.

- The background shapes have no peaking in signal region.
- We can use the sideband region background to estimate the background of the signal region.

- ➤At this point, the signal shape is modeled by the corresponding signal MC simulation shape convoluted with a Gaussian function, the combinatorial background is modeled by an ARGUS function.
- > The fitting shape of m_{BC} distribution is as follows.

- Where the black error bar representative data sample
- The blue dashed represents the shape of the background

➤We subtracted the background by tightening the cut condition

- >Add the following cut conditions, respectively. The fitting shape of m_{BC} distribution is change to below.
 - 4C kmfit
 - $|\Delta E| < 0.02 \text{GeV}$

Final selection

≻After all selection

\succ The number of events is shown in the table below.

	data	MC
$\Lambda_c^+ \longrightarrow p K^- \pi^+$	3195	545523
$\overline{\Lambda}_c^- \to \overline{p}K^+\pi^-$	3416	548013

\succ The invariant mass distribution as follow.

- Where the red error bar representative data sample, the black line representative inclusive MC sample.
- ≻The dalitz plot of data sample as follow

> And the beam-constrained mass mBC spectrum like this .

Data analysis result

➤Unbinned Likelihood Method

- $p.d.f(\xi,\eta) = \frac{\omega(\xi,\eta)}{\int d\xi \omega(\xi,\eta)\varepsilon(\xi)}$
- $-ln\mathcal{L} = -\sum_{i=1}^{N} ln \frac{\omega(\xi_i, \eta)}{\sigma}$
- We can minimize the Log equation $-ln\mathcal{L} = -\sum_{i=1}^{N} ln \frac{\omega(\xi_i, \eta)}{\sigma}$ and obtain the decay asymmetry parameter.

≻Three body decay amplitude formula

•
$$w(\xi) = 4\pi \left(1 + \eta \cos^2\theta + \alpha_{L_c} \sqrt{1 - \eta^2} \sin(\Delta\phi) \left(\frac{1}{2} \sin(2\theta) \sin\alpha \sin\beta \right) \right)$$

- Where η is the angular distribution parameter of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$, $\Delta \phi$ is the difference of phase angle for the helicity amplitude, θ is the polar angle of Λ_c^+ which generate in $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ decay process.
- > We can determine α and β value by obtaining the angular distribution information of the decay process.

• Where the final state particle momentum direction in Λ_c^+ centre of mass system as follow

- We provide the direction of proton momentum is the direction of the X-axis
- Where the Euler angle α and β as follow

The blue coordinate system corresponds to the center mass system for the $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ process, and the red frame corresponds to the center mass system for Λ_c^+ .

≻MINUIT fit method

• Three-body decay

•
$$w(\theta) = 4\pi \left(1 + \eta \cos^2 \theta + \alpha_{L_c} \sqrt{1 - \eta^2} \sin(\Delta \phi) \left(\frac{1}{2} \sin(2\theta) \sin \alpha \sin \beta \right) \right)$$

- We use the maximum likelihood method to fit the values of $lpha_{L_c}$ and η .
- Meanwhile , because I can't get all three parameters at the same time so I define the alphaLc= $\alpha_{Lc} \sin(\Delta \phi)$.

➢Likelihood estimation

- The joint probability density for the observed N event in a data sample is defined as $\mathcal{L} = \prod_{i=1}^{N} P(x_i)$,
- The normalized $P(x_i)$ is calculated from the differential cross section
- $P(x_i) = \frac{(d\sigma/d\phi)_i}{\sigma_{MC}}$,
- Where $d\phi$ is the standard 3-body phase space ; the normalization factor σ_{MC} is calculated from a MC sample with N_{MC} accepted events , which are generated with a phase space model. The response of the detector to the final-state particles is simulated using GEANT4. The e^+e^- annihilation and the subsequent decay of $\Lambda_c^+\overline{\Lambda_c^-}$ are simulated by the KKMC generator, taking into consideration the spread of the beam energy and the effect of initial-state radiation (ISR).

• PHSP (phase Space) signal MC , while works as efficiency MC sample and is used to perform the maximum likelihood fit to the data , the fit result as follow

ext	erna	al pa	rameters:		
# ∈	ext.		Name	type	Value Error +/-
	0		eta	free	-0.2443718559321 0.04820830886996
	1		alphaLc	free	0.009049095778473 0.08385436556541
			-		

 \succ Here we cite wangbinlong's measurement results of the $~\Delta\phi$, that is $\Delta\phi=-0.28\pm0.14$

• So we can get specific asymmetry parameter results in $\Lambda_c^+ \rightarrow pK^-\pi^+$ process by using the maximum likelihood fit method and the mathematica calculate method.

ez	kterna	al pa	rameters:			
#	ext.		Name	tvpe	11	Value Error +/-
		•••		<u> </u>		
	0	1.1	oto II	froo		-0 2350120306061 110 01067730015362
	0		eta	TTEE		-0.2330420390904 0.04007730043302
	1		alphaLc	free		-0.0914786786611 0.304159393407
	2	11	delta II	fixed	11	-0.28 []
	_		actoa	11100		

• So this is what we get for asymmetry parameter center value results by mathematica calculate method .

 $\ln[30]:= A = -0.0253; \Delta = -0.28; \alpha = \frac{A}{\sin[\Delta]}$ Out[30]= 0.0915487

• The uncertainty is calculated from Error transfer method .

$$\ln[32] = \mathbf{b} = \operatorname{Sqrt}\left[\left(\frac{1}{-0.28}\right)^{2} \times (0.083)^{2} + \left(\frac{-0.0368}{-0.28^{2}}\right)^{2} \times (0.14)^{2}\right]$$

$$\operatorname{Out}[32] = 0.303625$$

- Asymmetry parameter results determined by computing the decay parameter to be -0.0915487 ± 0.303383
- Next we show the output check through the following three angular distribution information.

 \succ The red error bars are data, black lines are the fit shape .

 \succ The same way to do $\overline{\Lambda}_c^- \longrightarrow \overline{p}K^+\pi^-$ we get the following result.

• The fit result as follow

exte	rna	ı⊥ pa	rameters:				
# ex	t.	11	Name		type	Н	Value Error +/-
0 1			eta alphaLc		free free		-0.1413278557165 0.05171288629871 0.1330758158956 0.3008703657499
2		ii –	delta	İİ –	fixed	İİ	-0.28

• The mathematica calculate asymmetry parameter center value result

 $\ln[31]:= A = -0.0368; \Delta = -0.28; \alpha = \frac{A}{\sin[\Delta]}$

```
Out[31]= 0.133162
```

• The uncertainty is calculated from Error transfer

$$\ln[32]:= b = \operatorname{Sqrt}\left[\left(\frac{1}{-0.28}\right)^{2} + (0.083)^{2} + \left(\frac{-0.0368}{-0.28^{2}}\right)^{2} + (0.14)^{2}\right]$$

```
Out[32]= 0.303625
```

l+Γ

• So the result is 0.133162 ± 0.303625 .

Toy MC test

 \succ We use the massH2 method to regenerate the toy MC sample of .

• The data sample dalitz plot is used as follows:

The e^+e^- annihilation is simulated by the KKMC generator, taking into consideration the spread of the beam energy and the effect of initial-state radiation (ISR). The subsequent decay of $\Lambda_c^+ \overline{\Lambda_c^-}$ are generated using massH2 model.

>Use the same method to get the value of asymmetry parameter in $\Lambda_c^+ \rightarrow pK^-\pi^+$ process ,the fit result as follow

e	xterna	al pa	arameters:		
#	ext.		Name	type	Value Error +/-
	0		eta	free	-0.2387238192072 0.0484946422849
	1		alphaLc	free	-0.0345800996708 0.3038653606774
	2		delta	fixed	-0.28

- \succ And the Mathematica result is -0.0327 \pm 0.2999.
- > By the same method we can get the value of asymmetry parameter in the process $\overline{\Lambda}_c^- \rightarrow \overline{p}K^+\pi^-$ of and we won't go into the details of the operation.

external # ext.	parameters: Name	type	11	Value Error +/-
0	eta	free		-0.1423911816089 0.05166380460614
1	alphaLc	free		0.1555164210295 0.3007805143053
2	delta	fixed		-0.28

Summary and outlook

- We know that when CP conserves the asymmetry parameter of $\Lambda_c^+ \rightarrow pK^-\pi^+$ process and its asymmetry parameter in charge conjugated engineering are the inverse of each other.
- Through our previous measurement and calculation, the asymmetry parameter value in different processes can be obtained as shown in the following table

	α
$\Lambda_c^+ \longrightarrow p K^- \pi^+$	-0.0327 ± 0.2999
$\overline{\Lambda}_c^- \longrightarrow \overline{p} K^+ \pi^-$	0.1555 ± 0.3008

• It can be seen from the above table that there is CP violation in the process of Λ_c decay to *proton*, *kaon and pion*, and the determination of CP violation parameters will become the direction of our next work.

 \succ Finish my master's thesis.

Thank you !