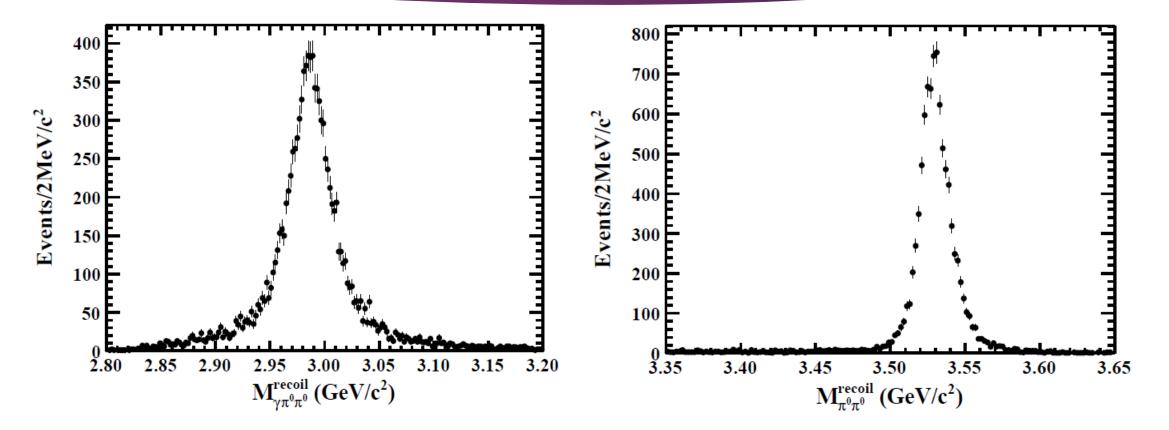

Cross section measurement of $e^+e^- \rightarrow \pi^0 \pi^0 h_c$

Q. P. JI, X. F. WANG, Z. Y. WANG, C. X. YU HNNU, IHEP, NKU Feb. 19, 2019 Charmonium group meeting

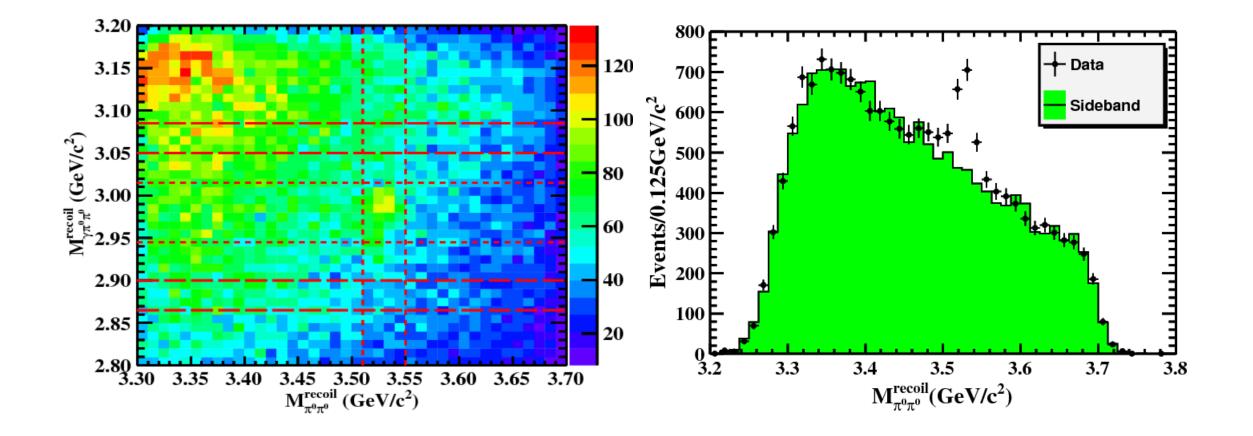
Motivation

- Evidence of Two Resonant Structures, Y(4220) and Y(4390), in the line-shep of $e^+e^- \rightarrow \pi^+\pi^-h_c$
- ► Observation of $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ at $\sqrt{s} = 4.23$, 4.26, 4.36 GeV
- ▶ ~500 pb⁻¹ luminosity data at \sqrt{s} = 4.19-4.28 GeV in 2017 and ~3189 pb⁻¹ at 4.180 GeV
- Give us an opportunity to investigate the line-shape of $e^+e^- \rightarrow \pi^0 \pi^0 h_c$
- Follow up study for the previous work.

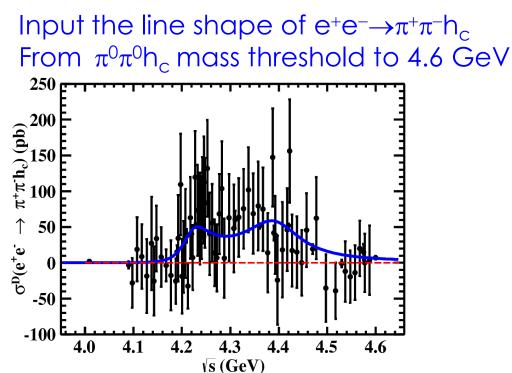

Datasets

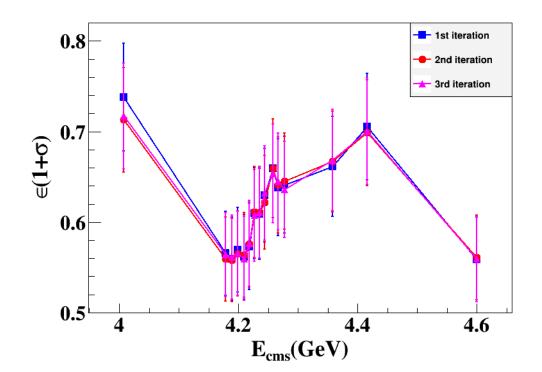
Data sample	\sqrt{s} (GeV)	$\mathcal{L}(pb^{-1})$
4009	4.0076	482.0
4180	4.1783	3189.0
4190	4.1893	512.9
4180	4.1996	523.7
4210	4.2097	511.2
4220	4.2188	508.2
4230	4.2263	1090.0
4237	4.2358	508.9
4246	4.2439	532.7
4260	4.2580	825.7
4270	4.2669	529.3
4280	4.2778	174.5
4360	4.3583	539.8
4420	4.4156	1028.9
4600	4.5995	566.9

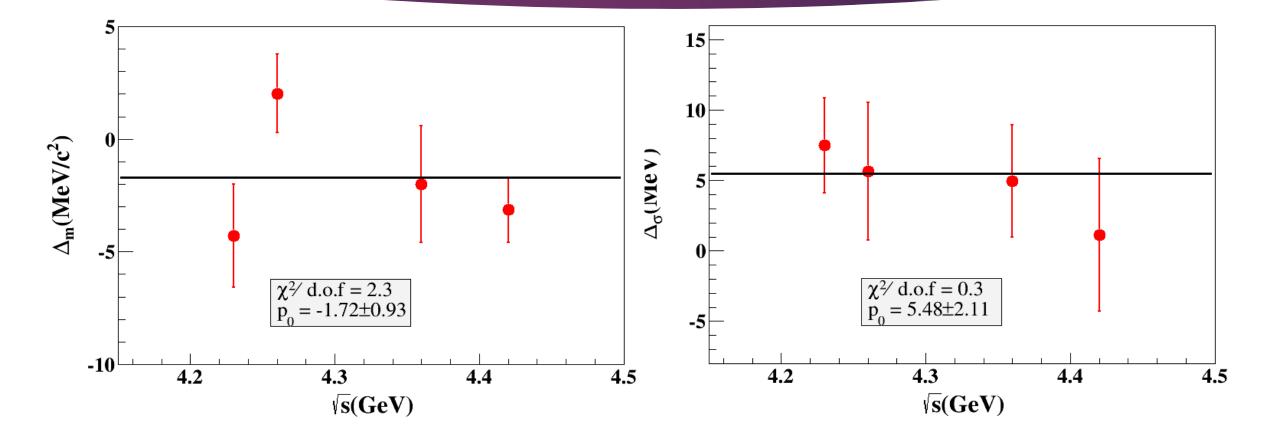
Software environment: BOSS703


Signal MC: 200K for each η_c mode at each Energy Point

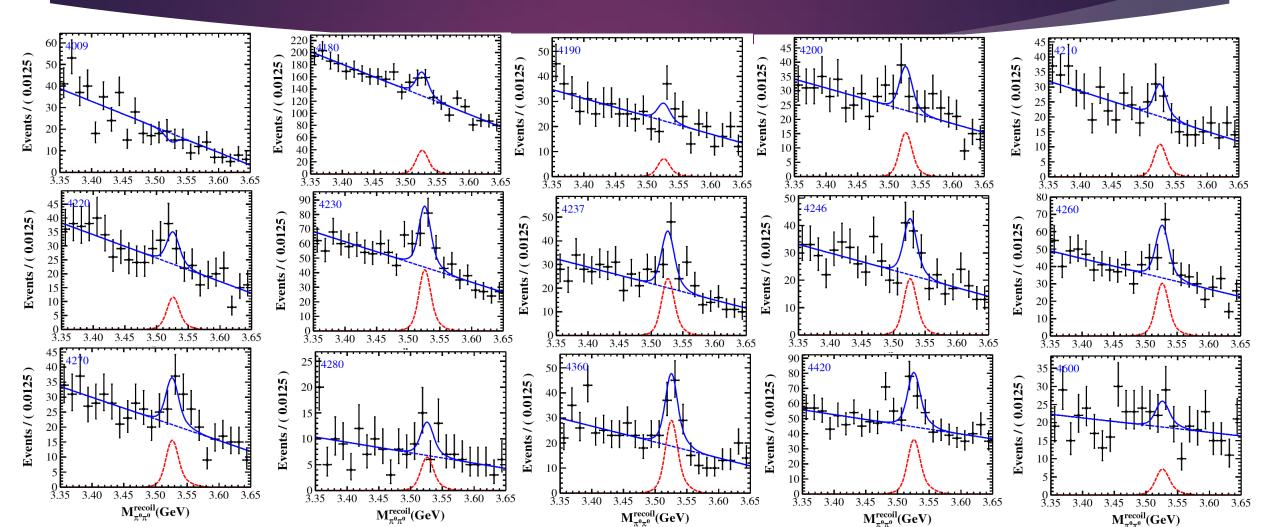
Plots in MC simulation summed over 16 η_c decay modes at $\sqrt{s} = 4.2583$ GeV

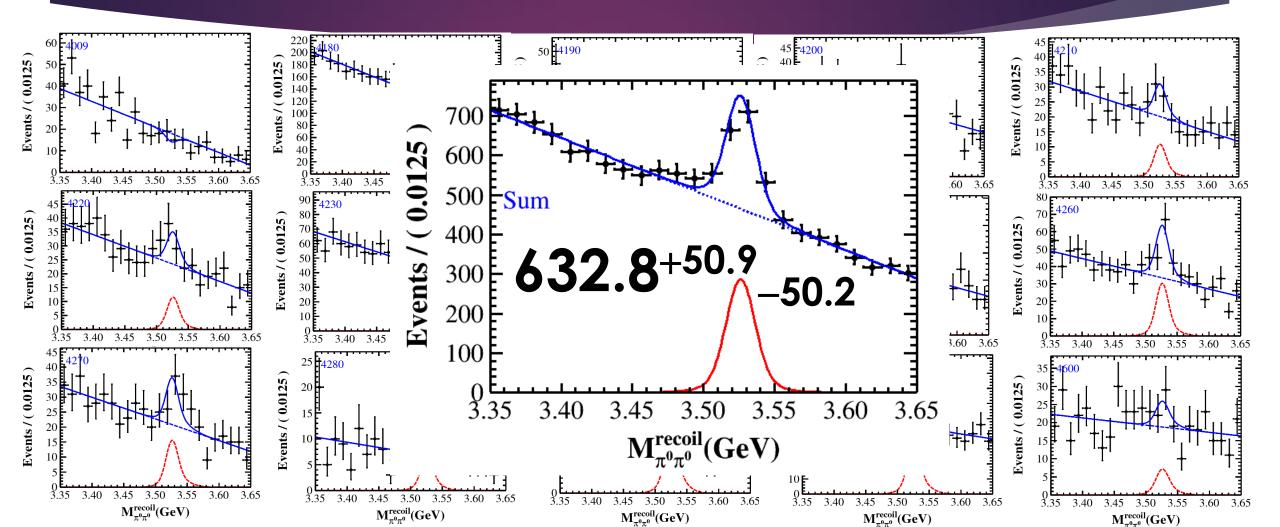

Event selection criteria follows the previous work.


Plots in data summed over all energy points


Detection efficiency

- Iteration method
- Initial state radiation correction
- To be stable


Difference between MC and data


7

Fit to the mean (left) and sigma (right) distribution as a function of \sqrt{s} .

Fit to $M_{\pi 0\pi 0}^{recoil}$

Fit to $M_{\pi 0\pi 0}^{recoil}$

Numerical results

Data	$N^{obs.}$	Significance	$\sum_i \epsilon_i \mathcal{B}_i(\%)$	$1 + \delta$	$ 1 + \Pi ^2$	$\sigma^{B}(\text{pb})$
4009	$-7.4^{+8.2}_{-7.5}$	-	0.448	1.599	1.05	$-4.0^{+4.4}_{-4.0}$
4180	$83.9^{+25.0}_{-24.3}$	3.6σ	0.722	0.781	1.05	$8.5^{+2.5}_{-2.5}$
4190	$15.4^{+10.6}_{-12.0}$	1.6σ	0.719	0.780	1.06	$9.5^{+6.5}_{-6.2}$
4200	$33.8^{+12.0}_{-11.2}$	3.2σ	0.724	0.781	1.06	$20.4^{+7.2}_{-6.8}$
4210	$23.8^{+10.8}_{-10.0}$	2.5σ	0.712	0.786	1.06	$14.9^{+6.8}_{-6.3}$
4220	$26.3^{+11.9}_{-11.2}$	2.5σ	0.721	0.800	1.06	$16.3^{+7.4}_{-6.9}$
4230	$93.1^{+17.7}_{-16.9}$	6.1σ	0.743	0.818	1.06	$25.2^{+4.8}_{-4.6}$
4237	$54.7^{+12.7}_{-12.0}$	5.2σ	0.723	0.845	1.06	$30.7^{+7.1}_{-6.7}$
4246	$46.6^{+12.3}_{-11.6}$	4.5σ	0.728	0.868	1.06	$25.2^{+6.6}_{-6.3}$
4260	$69.5^{+15.5}_{-14.8}$	5.2σ	0.722	0.905	1.05	$23.4^{+5.2}_{-5.0}$
4270	$36.5^{+12.1}_{-11.4}$	3.50	0.701	0.920	1.05	$19.9^{+6.6}_{-6.2}$
4280	$14.5^{+7.3}_{-6.6}$	2.4σ	0.681	0.934	1.05	$23.8^{+12.0}_{-10.9}$
4360	$65.8^{+12.9}_{-12.2}$	6.3σ	0.723	0.925	1.05	$33.9^{+6.6}_{-6.3}$
4420	$83.1^{+17.4}_{-16.7}$	5.5σ	0.695	1.008	1.05	$20.2^{+4.2}_{-4.1}$
4600	$17.7^{+10.7}_{-10.0}$	1.8σ	0.322	1.736	1.05	$10.4^{+6.3}_{-5.9}$

Systematic uncertainty

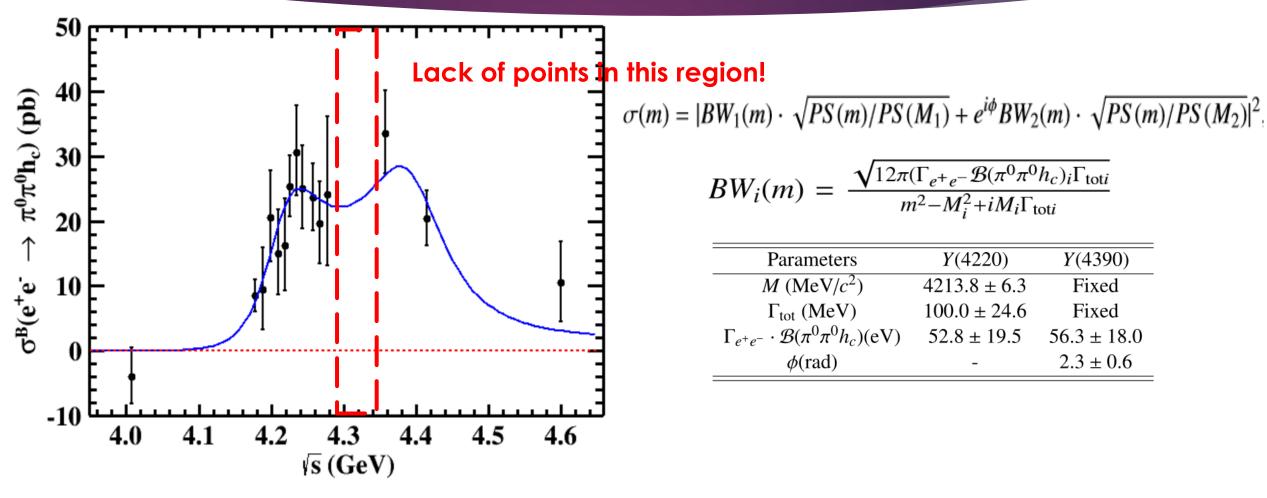
- ▶ ISR factor: the difference between second and third iteration, 0.3%
- Luminosity: 1.0%

Fitting

Efficiency

- Fitting range: varying range from [3.35,3.65] to [3.34,3.64] and [3.36,3.66] GeV/c2, 0.5%
- Bkg. Shape: changing the order of the polynominal function, negligible
- Signal shape: changing the mass/resolution difference by 1σ , 0.2 / 5.6%
- Tracking / Photon / K_s⁰ reconstruction, 1% / 1% / 1.2%
- Kinematic fit, by the track-parameter-corrected method
- nominal mass of η_c , 1.7%; line-shape of η_c , 0.6%
- MC simulation of $M(\pi^0\pi^0)$, negligible
- Cross feed, by MC simulation
- \blacktriangleright Z_c(4020)⁰, including it in MC simulation
- MC statistics,

Due to the limited statistics, data summed over all energy points is taken as the control sample for some of sources.


Systematic uncertainty

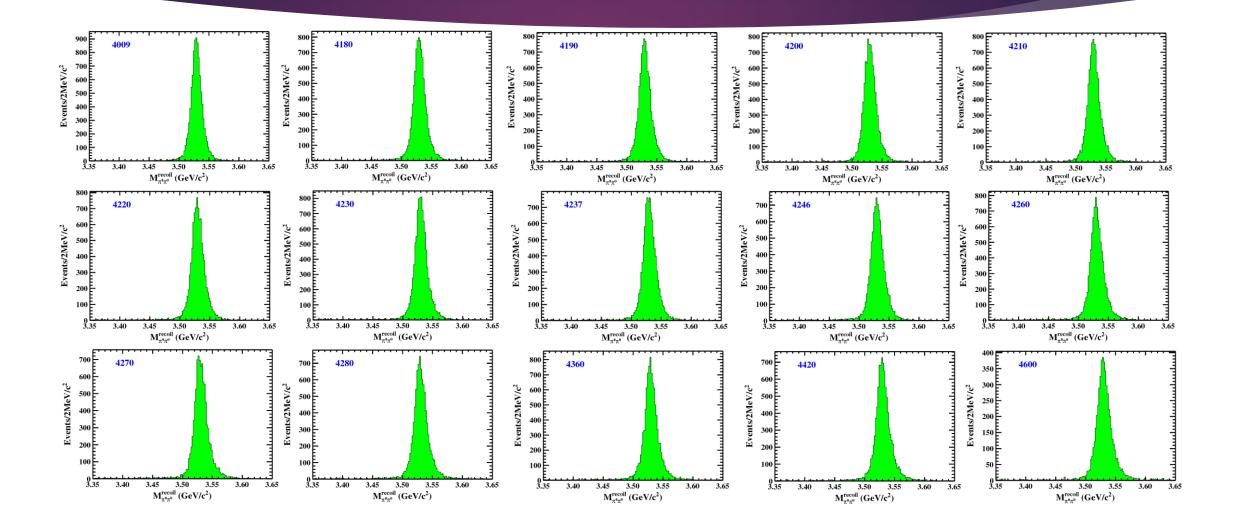
Source	Uncertainty(%)
Luminosity	1.0
Fit range	0.5
Mass resolution	5.6
Mass scale	0.2
Bkg shape	0.0
η_c mass	1.7
$Z_c(4020)^0$	4.2
$1 + \delta$	0.5
$\sum_i \epsilon_i \mathcal{B}(\eta_c \to X_i)$	8.7
Total	11.4

Born Cross Section

Data	$\sigma^{B}(\text{pb})$	$\sigma^B_{\rm old}({\rm pb})$ [17]
4009	$-4.0^{+4.4}_{-4.0}\pm0.4\pm0.6$	-
4180	$8.5^{+2.5}_{-2.5} \pm 1.0 \pm 1.3$	-
4190	$9.5^{+6.5}_{-6.2} \pm 1.1 \pm 1.5$	-
4200	$20.4^{+7.2}_{-6.8}\pm2.3\pm3.2$	-
4210	$14.9^{+6.8}_{-6.3} \pm 1.7 \pm 2.4$	-
4220	$16.3^{+7.4}_{-6.9} \pm 1.8 \pm 2.5$	-
4230	$25.2^{+4.8}_{-4.6}\pm2.9\pm4.0$	25.6 ± 4.8
4237	$30.7^{+7.1}_{-6.7} \pm 3.5 \pm 4.8$	-
4246	$25.2^{+6.6}_{-6.3}\pm2.8\pm3.9$	-
4260	$23.4^{+5.2}_{-5.0}\pm2.7\pm3.7$	24.4 ± 5.1
4270	$19.9^{+6.6}_{-6.2} \pm 2.2 \pm 3.1$	-
4280	$23.8^{+12.0}_{-10.9}\pm2.7\pm3.8$	-
4360	$33.9^{+6.6}_{-6.3}\pm3.8\pm5.3$	36.2 ± 6.5
4420	$20.2^{+4.2}_{-4.1}\pm2.3\pm3.2$	_
4600	$10.4^{+6.3}_{-5.9} \pm 1.2 \pm 1.7$	-

Line-shape of $e^+e^- \rightarrow \pi^0 \pi^0 h_c$

Summary


► Using XYZ data for 15 energy points, Born cross section of $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ is measured.

15

► Line shape of $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ is similar to that of $e^+e^- \rightarrow \pi^+ \pi^- h_c$ Clear Structure Near 4.22 GeV, more energy points above 4.300 GeV are needed.

MC simulation

18

Table 5: Efficiency related systematic uncertainties of the cross section at $\sqrt{s} = 4.4156 \text{ GeV} (\%)$.

η_c decay mode	MDC Tracking	Photon	π^0	η	K_S^0	Kinematic Fit	MC statistics	Cross feed	$M_{\pi^0\pi^0}$	η_c line-shape	Total
$p\bar{p}$	2	5	2	-	-	0.4	0.7	-	-		5.8
$\pi^{+}\pi^{-}K^{+}K^{-}$	4	5	2	-	-	0.5	1.1	-	-		6.8
$\pi^+\pi^-p\bar{p}$	4	5	2	-	-	1.4	1.0	0.0	-		7.0
$2(K^+K^-)$	4	5	2	-	-	0.8	1.2	-	-		6.9
$2(\pi^{+}\pi^{-})$	4	5	2	-	-	1.3	1.0	-	-		6.9
$3(\pi^{+}\pi^{-})$	6	5	2	-	-	1.3	1.2	-	-		8.3
$K^+K^-2(\pi^+\pi^-)$	6	5	2	-	-	1.7	1.6	0.1	-	0.6	8.4
$K_s K^+ \pi^- + \text{c.c.}$	2	5	2	-	1.2	1.6	1.0	0.4	-		6.2
$K_S K^+ \pi^+ \pi^- \pi^0$	4	5	2	-	1.2	2.4	1.8	0.0	-		7.5
$K^+K^-\pi^0$	2	7	3	-	-	1.0	1.2	0.9	-		8.1
$p\bar{p}\pi^0$	2	7	3	-	-	1.7	1.3	-	-		8.2
$K^+K^-\eta$	2	7	2	1	-	1.6	1.2	0.4	-		7.9
$\pi^+\pi^-\eta$	2	7	2	1	-	1.0	1.1	-	-		7.8
$2(\pi^{+}\pi^{-})\eta$	4	7	4	-	-	1.1	1.8	-	-		9.3
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	2	9	4	-	-	0.9	1.5	0.3	-		10.2
$2(\pi^+\pi^-)\pi^0\pi^0$	4	9	4	-	-	1.7	3.6	0.1	-		11.4

Dalitz plot

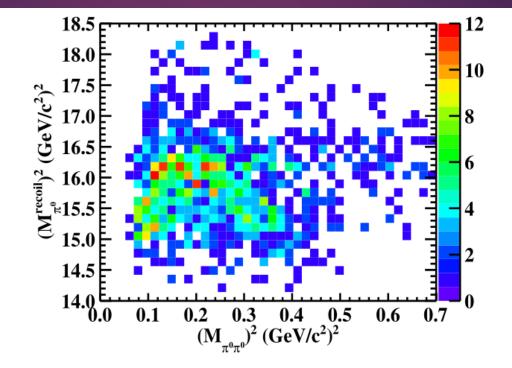


Figure 9: The dalitz plot of $(M_{\pi^0\pi^0})^2$ versus $(M_{\pi^0}^{\text{recoil}})^2$ in h_c signal region from the summed data at $\sqrt{s} = 4.1783, 4.2263, 4.2580$, and 4.4156 GeV.

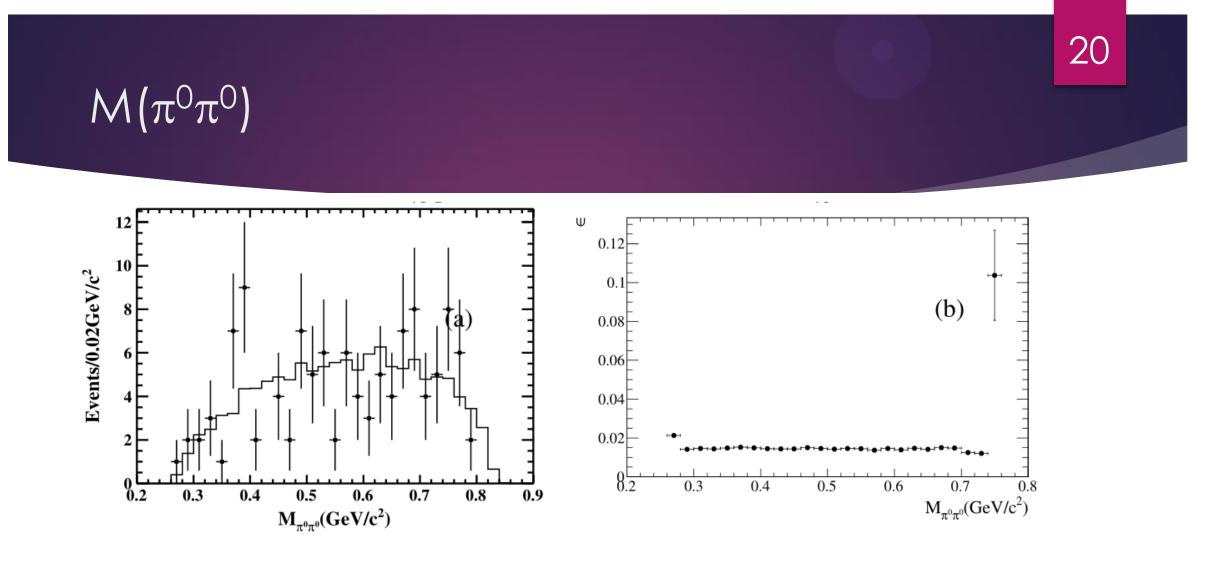


Figure 10: (a) The $\pi^0 \pi^0$ invariant mass spectrum in h_c signal region from data at $\sqrt{s} = 4.3583$ GeV. (b) The efficiency of $M_{\pi^0 \pi^0}$ in h_c signal region for signal MC simulation at $\sqrt{s} = 4.3583$ GeV.