Phase structure of dense QCD matter with magnetic field and Rotation

Defu Hou

Central China Normal University, Wuhan

4th CBM-China workshop, Yichang, Apri 12-14, 2019

Outlines

- Motivations
- Phase structure with magnetic field (B)
- FRG study on xPT of dense QCD matter
- Rotation effects on phase structure
- Summary

H. Zhang, DF Hou, JF Liao, arxiv 1812.11787

Dense quark matter

Ground state of dense quark matter is CSC

Phase structure in CSC

- BSC-like pairing
- J=0: 2SC: u_r, d_r, u_g, d_g CFL: all flavor and color

M. Alford, K. Rajagopal and F. Wilczek, NPB 537, 443 (1999)

J=1:

T. Schaefer, PRD 62, 094007 (2000) A. Schmitt, PRD 71, 054016 (2005)

 Non-BCS pairing gapless CSC LOFF

.

.....

Shovkovy and M. Huang, PLB 546, 205 (2003) M. Alford et al., PRL 92, 222001 (2004) M. Alford et al., PRD 63, 074016 (2001)

CSC in a compact star

CJL effective action

Gauge field fluc. induce 1st order PT of CSC in dense QCD

<u>Ginnakis, Hou, Ren, Rischke, PRL 93 (04); PRD73 (06)</u>

$$\Gamma_{cond} = 1/4 \left(\frac{3}{2} \right)^{2} - 1/4 \left(\frac{1}{2} \right)^{2} + 1/2 \left(\frac{3}{2} \right)^{2} + 1/2 \left(\frac{3}{2} \right)^{2} + 3/8 \left(\frac{3}{2} \right)^{2} - 3/2 \left(\frac{3}{2} \right)^{2} + 1/4 \left(\frac{3}{2} \right)^{2} \right)^{2} ,$$

Introduction of Δ^3 term in free energy by flucts. Inducing 1st order PT in stead of 2nd order PT in MFA

Color Superconductor with B

Oscillation, decrease the gap at low B, and increase gap at high B

FIG. 1 (color online). Gap parameters as a function of $\tilde{e} \tilde{B} / \mu_q^2$ for $\mu_q = 500$ MeV and $M_s = 100$ MeV without neutrality.

FIG. 1 (color online). Ratios Δ/ϕ_0 and ϕ/ϕ_0 versus eB/μ^2 for two sets of parameters that yield $\phi_0 = 10$ MeV and $\phi_0 = 25$ MeV.

K.Fukushima,etc. PRL 100(2008)032007, CFL

J.Noroha, etc. PRD 76(2007)105030, CFL

Nonspherical states in dense QCD with B

	Ι	Π	III	IV	$T_C(10^{-1} \text{ MeV})$
Two-flavor Three-flavor	CSL_u, CSL_d $CSL_u, CSL_{d,s}$	$(\text{polar})_u$, $(\text{planar})_d$ $(\text{polar})_u$, $(\text{planar})_{d,s}$	$(normal)_u$, $(polar)_d$ $(normal)_u$, $(polar)_{d,s}$	$(normal)_u$, $(normal)_d$ $(normal)_u$, $(normal)_{d,s}$	1.35 0.49
10	I IV	3 flav	7.0x10 ⁴⁴ 6.0x10 ⁴⁴ 5.0x10 ⁴⁴ 4.0x10 ⁴⁴ 3.0x10 ⁴⁴ 2.0x10 ⁴⁴	three flavor	
10	IV	2 fla	vor Q 0.0 1.0x10 ⁴⁵		·····
0.1	II		6.0x10 ⁴⁴	two flavor	
[0.0	0.2 0.4 T	0.6 0.8 /T _c	1.0 2.0x10 ⁴⁴	0 0.2 0.4	0.6 0.8

Feng, Hou, Ren, Wu, PRL 105(2010)

Wu, He, Hou, Ren, PRD84 (2011)

Chiral Magnetic Catalysis

• Chiral magnetic catalysis: Gusyin, Miransky & Shovkovy (1994)

$$<0 | \overline{\psi}\psi | 0 > \stackrel{\lim m=0}{=} -\frac{|eB|}{2\pi}$$

Dynamical breakdown of chiral symmetry takes place at m = 0 and $B \neq 0$ even without any additional interactions between fermions.

The essence of this effect is the dimensional reduction 3+1->1+1 in the dynamics of fermion pairing in a magnetic field.

$$E_n(p_3) = \pm \sqrt{m_{dyn}^2 + 2 |eB| n + p_3^2}, \quad n = 0, 1, 2....$$

In a strong magnetic field, all charged fermions will be restricted in lowest Landau level only, thus effectively reduce the dimension of the system.

$$m_{dyn} \approx C\sqrt{eB} \exp\left[-\left(\frac{\pi}{\alpha}\right)^{1/2}\right]$$

BEC with Magnetic field B

- BEC shares the same physics as chiral condensate.
- Chiral condensates correspond to the BEC limit in BCS/BEC crossover.

Inverse chiral catalysis in strong coupling

Feng, Hou, Ren PRD 92(2015)

Chiral catalysis in weak coupling

Feng, Hou, Ren PRD 92(2015)

Condensation temperature versus the dimensionless magnetic field

Feng, Hou, Ren , Wu, _PRD 93 (2016)085019

FRG and phase structute

FRG flow equation

- For continuum field theory
- Non-perturbative
- (known) microscopic laws \rightarrow complex macroscopic phenomena
- Flow from classical action $S[\phi]$ to effective action $\Gamma[\phi]$
- Scale dependent effective action Γ_k[φ]

Wetterich, PLB301, 90 (1993).

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \left[\frac{\partial_k R_k}{\Gamma_k^{(2)} + R_k} \right]$$

$$\left(\bigotimes + \bigotimes \left[\right] \right) \Big|_{T,\mu}$$

FRG study of phase structure at finite density

Zhang, Hou, Kojo, Qin Phys.Rev. D96,114029 (2017)

$$\mathcal{L} = \bar{\psi} \Big[i\gamma_{\mu} \partial^{\mu} - g_{s} (\sigma + i\gamma_{5} \boldsymbol{\tau} \cdot \boldsymbol{\pi}) - g_{v} \gamma_{\mu} \omega^{\mu} - \gamma_{0} \mu \Big] \psi$$

+ $\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma + \frac{1}{2} \partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \boldsymbol{\pi} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$
- $U(\sigma, \boldsymbol{\pi}, \omega)$
 $F_{\mu\nu} = \partial_{\mu} \omega_{\nu} - \partial_{\nu} \omega_{\mu} \qquad \psi = (u, d)^{T}$

The potential for σ , π , and ω is

$$\begin{split} U(\sigma, \boldsymbol{\pi}, \omega) &= \frac{\lambda}{4} (\sigma^2 + \boldsymbol{\pi}^2 - f_{\pi}^2)^2 - \frac{m_v^2}{2} \omega_{\mu} \omega^{\mu}, \ \text{ For chiral limit} \\ U(\sigma, \boldsymbol{\pi}, \omega) &= \frac{\lambda}{4} (\sigma^2 + \boldsymbol{\pi}^2 - \nu^2)^2 + H\sigma - \frac{m_v^2}{2} \omega_{\mu} \omega^{\mu}, \ \text{For explicit SB} \end{split}$$

17

Mean-Field

For T=0 & μ =0, the MF potential is

$$\begin{split} U_{\rm MF}(\sigma,\omega_0) &= \frac{\lambda}{4} (\sigma^2 - f_\pi^2)^2 - \frac{m_v^2}{2} \omega_0^2, & \text{For chiral limit} \\ U_{\rm MF}(\sigma,\omega_0) &= \frac{\lambda}{4} (\sigma^2 - \nu^2)^2 + H\sigma - \frac{m_v^2}{2} \omega_0^2, & \text{For explicit Chiral SB.} \end{split}$$

For T \neq 0 & $\mu\neq$ 0, the MF potential is

$$\begin{split} \Omega_{\rm MF} &= \Omega_{\bar{\psi}\psi} + U_{\rm MF}(\sigma,\omega_0) \\ \Omega_{\bar{\psi}\psi} &= -\nu_q T \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \bigg\{ \ln[1 + e^{-(E_q - \mu_{\rm eff})/T}] + \ln[1 + e^{-(E_q + \mu_{\rm eff})/T}] \bigg\} \\ m_{\rm eff} &= g_s \sigma, \qquad \mu_{\rm eff} = \mu - g_v \omega_0. \end{split}$$

fπ=93MeV, mπ=138MeV, λ =20, gs=3.3 O. Scavenius, A. Mocsy, I. N. Mishustin & D. H. Rischke, Phys. Rev. C 64, 045202 (2001) 18

FRG flow equation

3d-analogue of the optimized regulator

$$\begin{aligned} R_{k,B}(\boldsymbol{p}) &= (k^2 - \boldsymbol{p}^2)\theta(k^2 - \boldsymbol{p}^2), \\ R_{k,F}(\boldsymbol{p}) &= -\boldsymbol{p} \cdot \boldsymbol{\gamma} \left(\sqrt{\frac{k^2}{\boldsymbol{p}^2}} - 1 \right) \theta(k^2 - \boldsymbol{p}^2), \end{aligned}$$

the flow equation for the potential U_k^{φ} can be obtained as Schaefer & Wambach NPA 2005

$$\partial_k U_k^{\phi}(T,\mu) = \frac{k^4}{12\pi^2} \left\{ \frac{3[1+2n_{\rm B}(E_{\pi})]}{E_{\pi}} + \frac{1+2n_{\rm B}(E_{\sigma})}{E_{\sigma}} - \frac{2\nu_q \left[1-n_{\rm F}(E_q,\mu_{\rm eff}^k) - n_{\rm F}(E_q,-\mu_{\rm eff}^k)\right]}{E_q} \right\}$$

with single-particle energies are

$$E_{\pi} = \sqrt{k^2 + 2U'_k},$$

$$E_{\sigma} = \sqrt{k^2 + 2U'_k + 4\phi^2 U''_k},$$

$$E_q = \sqrt{k^2 + g_s^2 \phi^2}$$

The boson and fermion occupation numbers are

$$n_B(E) = \frac{1}{e^{\beta E} - 1}$$
$$n_F(E, \mu) = \frac{1}{e^{\beta(E-\mu)} + 1}$$

Phase structure

Zhang, Hou, Kojo, Qin Phys.Rev. D96,114029 (2017)

20

Zhang, Hou, Kojo, Qin Phys.Rev. D96,114029 (2017)

(i) At high T the fluctuations turn the 1st order line in the MF into 2nd order, yielding the TCP (ii) While the critical μ of the TCP is sensitive to the vector coupling, its critical T is similar

The scale evolution of the EP $\Gamma_k(\phi)$ at low T. (left) $g_v/m_v=0$, T=10 MeV & $\mu=276.7$ MeV; (right) $g_v/m_v=0.01$ MeV^-1, T=10 MeV & $\mu=287.7$ MeV.

The fluctuations erase the barrier between two local minima in the MF potential.

At finite vector coupling, the essential features remain the same as the $g_v=0$ case; the flucts. do not modify the potential around $\varphi \simeq 93$ MeV, the potential around $\varphi \simeq 0$ is strongly affected.

Figure: The μ -dependence of the baryon density considerably deviates from $\sim \mu^3$ behavior expected from the single particle contributions. $n_B = n_B^{\text{single}} + n_B^{\text{fluct}}$

Several other checks

LPA 4 $U_k(\phi) = \frac{\lambda_k}{4}(\phi^2 - a_k)^2$

With g_4 & initial condition for ω

$$\omega_{\Lambda} = \phi$$
$$U_{k}(\omega) = -\frac{1}{2}m_{v}^{2}\omega_{0,k}^{2} + \frac{1}{12}g_{4} \cdot (g_{v}^{2}m_{v}^{2}) \cdot \omega_{0,k}^{4}$$

With the quartic term, the overall structure such as the back bending behavior is not significantly affected.

Phase structure under rotation

Jiang, Liao: PRL117(2016)192303

Mesonic superfluidity under rotation

$$\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m_{0} + \frac{\mu_{I}}{2}\gamma_{0}\tau_{3})\psi + G_{s}\left[\left(\bar{\psi}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau\psi\right)^{2}\right] \\ -G_{v}\left[\left(\bar{\psi}\gamma_{\mu}\tau\psi\right)^{2} + \left(\bar{\psi}\gamma_{\mu}\gamma_{5}\tau\psi\right)^{2}\right]$$
MF approximation: $\sigma = \langle \bar{\psi}\psi\rangle, \ \pi = \langle \bar{\psi}i\gamma_{5}\tau\psi\rangle, \ \rho = \langle \bar{\psi}i\gamma_{0}\gamma_{5}\tau_{3}\psi\rangle$

$$\Omega = G(\sigma^{2} + \pi^{2}) - G\rho^{2} - \frac{N_{c}N_{f}}{16\pi^{2}} \sum_{n} \int dk_{t}^{2} \int dk_{z} [J_{n+1}(k_{t}r)^{2} + J_{n}(k_{t}r)^{2}] \\ \times T \Big[\ln \Big(1 + \exp(-\frac{\omega^{+} - (n + \frac{1}{2})\omega}{T}) \Big) + \ln \Big(1 + \exp(\frac{\omega^{+} - (n + \frac{1}{2})\omega}{T}) \Big) \\ + \ln \Big(1 + \exp(-\frac{\omega^{-} - (n + \frac{1}{2})\omega}{T}) \Big) + \ln \Big(1 + \exp(\frac{\omega^{-} - (n + \frac{1}{2})\omega}{T}) \Big) \Big]$$

Rotational suppression of Pion superfluid

Rotation weaken spin 0 condensate, inverse catalysis effect

H. Zhang, DF Hou, JF Liao, arxiv 1812.11787

He, M. Jin and P. Zhuang, Phys. Rev. D 71,116001 (2005); L. He and P. Zhuang, Phys. Lett. B 615, 93 (2005)

Pion superfluidity phase diagram in T-µI

Enhenced Rho Superfluid under rotation

Rho condensate at T=mu=0 with none zero isospin chemical potential under rotation

New mesonic superfluid phase diagram

H. Zhang, DF Hou, JF Liao, arxiv 1812.11787

Summary and outlook

- Dense QCD matter has very rich phase structures.
- Fluctuations are important for TCP of QCD, FRG provides an useful tool
- Magnetic field has nontrivial effects on phase structure
- (Magnetic Catalyse & inverse Magetic catalyse)
- Rotation suppresses spin 0 condensate , enhances nonzero spin ones
- A new phase diagram for isospin matter under rotation with a new TCP

Thank you very much for your attention!

Summary for BEC under B

- We point out that magnetic field has two effects: dimension reduction and enhancement of fluctuations.
- We elaborate this mechnism via a simple example: BEC of neutral composite bosons.
- We find that in NR case the fluctuations play a significant role and inverse magnetic catalysis arises in strong coupling domain.
- In relativistic case, the fluctuations are NOT as significant as that in NR. The inverse magnetic catalysis found in Lattice QCD may due to the complex in the dynamics in QCD.

Magnetic (Inverse)chiral catalysis at weak (strong) coupling

Feng, Hou, Ren PRD 92(2015)

The ratio of critical temperature tc versus magnetic field b at weak and strong coupling

FRGE study of phase diagram: Flucts on CEP

Nematic Isotropic (NI) Puzzle with FRGE

Qin, Hou, Huang, Zhang, PRB98, (2018)

Zhang, Hou, Kojo, Qin, PRD96 (2017)

Magnetic (Inverse)chiral catalysis at weak (strong) coupling

Feng, Hou, Ren , Wu, **PRD 93 (2016)085019**

Condensation temperature versus the dimensionless magnetic field