

Research of high precision time measurement electronics

ZHAO Lei

State Key Laboratory of Particle Detection & Electronics

University of Science and Technology of China

2018-07-28

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Contents

- Methods for time measurement
- Method 1: discrimination + TDC
- Method 2: waveform digitization based on SCA
 - verification based on TARGET7
 - verification based on DRS4
 - verification using another time calibration method
- Design of a 16 chl waveform digitizer for nMRPC

Two methods for time measurement

Flash ADC \rightarrow Power consumption, density, cost

→ Switched Capacitor Array (SCA)

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Contents

- Methods for time measurement
- Method 1: discrimination + TDC
- Method 2: waveform digitization based on SCA
 - verification based on TARGET7
 - verification based on DRS4
 - verification using another time calibration method
- Design of a 16 chl waveform digitizer for nMRPC

Time measurement in two projects

In BESIII, the readout electronics of the Time-Of-Flight (TOF) detector is based on discrimination and HPTDC, and achieves a time resolution of better than 25 ps.

In the readout electronics of the external target experiment of CSR in Heavy Ion Research Facility in Lanzhou (HIRFL), time measurement is also based on discrimination and TDC. Time resolution of the electronics is better than 25

MPRC readout based on NINO+TDC

Parameter	Value
Peaking time	lns
Signal range	100fC-2pC
Noise (with detector)	< 5000 e- rms
Front edge time jitter	< 25ps rms
Power consumption	30 mW/ch
Discriminator threshold	10fC to 100fC
Differential Input impedance	$40\Omega < Zin < 75\Omega$
Output interface	LVDS

By F. Anghinolfi, et. al. UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

MPRC readout based on NINO+TDC

Readout electronics of External Target Experiment of CSR in HIRFL

MPRC readout based on NINO+TDC

FPGA TDC Design

Based on Wave-union method, the bin size and RMS resolution can be effective enhanced.

FPGA TDC Design

Bin size ~ 1.7 ps, RMS ~ 4.2 ps

16

Contents

- Methods for time measurement
- Method 1: discrimination + TDC
- Method 2: waveform digitization based on SCA
 - verification based on TARGET7
 - verification based on DRS4
 - verification using another time calibration method
- Design of a 16 chl waveform digitizer for nMRPC

Time measurement based on waveform digitization

• The basic idea is to sample the signal with a very high speed, then compute the time using the digitized waveform in digital signal processing domain.

- Since full waveform is digitized, charge information can be calculated, and time walk is not a problem.
- By increasing the sampling frequency f_S, the time resolution of the electronics can be enhanced, far beyond the sampling period (T_S=1/f_S) through digital processing such as fitting.

Waveform digitization based on TIADC

- High speed waveform digitization can be achieved based on Time Interleaving A/D Conversion (TIADC) technique.
- We achieved mismatch error correction using digital signal processing algorithms, and good resolution can be achieved.

10 Gsps, 8 bit

ENOB

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Frequency spectrum

Waveform digitization based on TIADC

1.6 Gsps 14 bit TIADC with real-time correction

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Waveform digitization based on TIADC

We have also designed a 8 Gsps, 12 bit TIADC module.

The mismatch errors can be corrected over a wide input signal frequency range, and real-time correction algorithm is successfully implemented in the FPGA device.

SCA based waveform digitization

Basic mechanism of SCA functionality

By Dr. Stefan Ritt

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Contents

- Methods for time measurement
- Method 1: discrimination + TDC
- Method 2: waveform digitization based on SCA
 - o verification based on TARGET7
 - verification based on DRS4
 - verification using another time calibration method
- Design of a 16 chl waveform digitizer for nMRPC

Verification based on TARGET7

- 16 chl / chip
- Power consumption: (<10mW/chl)
- Sampling rate: ~ Gsps
- 16384 cells / chl
- wilkinson ADC inside for each chl

Verification based on TARGET7

Uneven sampling interval calibration

Verification based on TARGET7

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Contents

- Methods for time measurement
- Method 1: discrimination + TDC
- Method 2: waveform digitization based on SCA
 - verification based on TARGET7
 - verification based on DRS4
 - verification using another time calibration method
- Design of a 16 chl waveform digitizer for nMRPC

Verification based onDRS4

Parameter:

- 8 Chnl.
- 5GS/s (max.)
- ~300 MHz BW (Passive Input)

Focusing on:

- Study of DRS4
- Prototype design
- Calibration & correction study:
 - DC offset correction
 - Time error correction

Waveform tests

Calibration & correction

(1) DC Offset Variation Error

(2) Uneven Sampling Intervals

Calibration of DC offset

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Calibration of Uneven Sampling Interval

Pulse Fitting

DRS4 time calibration

Global calibration

By D. Stricker-Shaver, S. Ritt

Time calibration

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Test in the Lab

Time resolution test

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

0 ns

2 ns

-0.35

-2.33

-2.32

-0.34

Time resolution test

Test in the Lab

Time resolution test

Contents

- Methods for time measurement
- Method 1: discrimination + TDC
- Method 2: waveform digitization based on SCA
 - verification based on TARGET7
 - verification based on DRS4
 - verification using another time calibration method
- Design of a 16 chl waveform digitizer for nMRPC

Design of a 16 chl waveform digitizer

Block diagram:

- □ 16 channels per module
- □ Analog circuits: buffering for input signals, calibration signal generation
- □ Self Trigger Circuits: discrimination, self trigger signal for SCA readout
- □ Data Readout: USB or PXI interface

Analog Front End

Two amplifiers are employed for comparison

- **Using switches to select among:**
- 1 Analog input signal
- ② DC voltage from DAC for calibration
- ③ Sine wave signal for calibration

Analog Front End

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Digitization circuits

Sampling: SCA – DRS4

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

8+1

950 MHz

5Gsps

< 1 Vpp

R3

R2

0.7 Gsps ~

30~40 MHz

0.35 mV RMS

R(n-1)

R(n-1)

Quantization

Parameter	
Channel no	8
-3dB BW	325 MHz
Sampling speed	50 Msps
resolution	14 bits
ENOB	11.8 bits
FSR	< 2 Vpp

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Clock circuits

- □ Main Clock
- ① 40MHz External clock input
- 2 Ref clock for generating the sampling clock & ADC sampling clock are both synchronized with it
- D PXI Clock

Used for data transfer based on PXI bus, provided by the backplane of the crate

Data Interface

□ PXI interface

- ① CPLD functions as PXI interface, responsible for data & command transfer, online update of the FPGA logic
- 2 Trigger signal receiving from the start trigger busUSB interface
- ① Used in debugging mode
- ② Using CY7C68013A as the USB controller

PCB Layout

Thanks

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA