

Plan & Effort from China for the NICA/MPD Inner Tracker

Yaping Wang Central China Normal University (CCNU)

- Introduction
- MAPS-based Inner Tracker (IT) for the NICA/MPD
- Plan & Effort from China for the MPD/IT
 Feasibility Plan and Effort from China Side
 - Organization and Timeline
- Summary and Outlook

Vertex Detector for HF physics measurements in HIC experiments

- MAPS, hard radiation, low material budget, low power consumption, fast readout, high spatial resolution
- Produced mostly from initial hard partonic scatterings at RHIC energies; exposed to the whole evolution of the Quark-Gluon Plasma (QGP)
- Yield or mass not (significantly) altered within the QGP, sensitive to parton-medium interactions and medium properties

ITS Plan for the NICA/MPD – Y. Wang

Proposed 2019~2023@sPHENIX Replica of ALICE ITS Inner Barrel

April 12, 2019

The IT detector will enable charm-hadron measurement and isolate collision vertex at high luminosity environment for the MPD experiments

- Charm production in heavy ion collisions at these collision energies
- Clean measurement of multi-strange hadron spectra

	Inner Barrel ^a			Outer Barrel	
	Layer0	Layer1	Layer2	Layer3	Layer4
R _{min} (mm)	22.4	40.7	59.8	145.8	194.4
R _{max} (mm)	26.7	45.9	65.1	147.9	197.6
Length (mm)	542 ^a	542 ^a	542 ^a	1468	1468
Pseudo-rapidity	±3.1	±2.5	±2.2	±2.3	±2.0
Nr. Of pixel chips (chips per stave x stave)	18 x 12	18 x 22	18 x 32	196 x 18	196 x 24
Active area (cm ²) (2mm dead area in r-phi)	842	1546	2246	13758	18345

- > 1^{st} step: 2 Outer Barrel layers (0.8% X₀), ready in 2022
- 2nd step: 3 Inner Barrel layers, depend on beam-pipe upgrade (the new generation of MAPS chips – ALICE ITS3?), R&D can be started in parallel

April 12, 2019

Space Frame

Outer Barrel

Power Bus

Radius (mm) 147, 196 Nr. Staves: 18, 24 Nr. Chips/ HIC module: 2x7

Length in z (mm): 1468 Nr. HIC module/ Stave: 7 Material thickness: ~0.8% X₀

Coolant Single-phase H₂O leak-less Pixel operational temperature < 30°C Pixel max temperature non-uniformity < 5°C Chip Power dissipation < 40mW/cm²

SREETAR TH

OB HIC module with 2 x 7 chips aligned on FPC

OB HIC Production

- 588 working HICs needed to assemble the OB barrel
- 784 assembled HICs assuming a total yield of 75%
- 980 assembled HICs with 20% spare
- 2 or 3 HIC production sites necessary: CCNU/Wuhan, JINR/Dubna, IMP?
- Target rate: 2 HICs per day per site in average, lasting for 1 year with 2 sites

OB Stave Production

- 84 working half staves (HS) needed to assemble OB barrel
- 100 assembled HSs (take into account spare and stave yield)
- 2 OB stave production sites necessary: CCNU/Wuhan, JINR/ Dubna, ?
- Target rate: 1 HS per week per site in average

Length in z (mm): 542 mm Nr. chips/ Stave: 18 Material thickness: ~0.3% X_o

Coolant Single-phase H₂O leak-less Pixel operational temperature < 30°C Pixel max temperature non-uniformity < 5°C Chip Power dissipation < 50mW/cm²

> IB HIC/Stave Option A (ALICE ITS2)

- 132 working HICs needed to assemble the IB barrel (double length of the IB staves of the ALICE ITS2)
- 218 assembled HICs assuming a total yield of 61%
- 240 assembled HICs with 10% spare
- 2 or 3 HIC production sites necessary: CCNU/Wuhan, JINR/Dubna, IMP?
- Target rate: 1 HIC per day per site in average, lasting for half year with 2 sites

IB HIC/Stave Option B (ITS3)

- Wafer-scale pixel sensor chip with spatial resolution better than 3 um and a time resolution of the order of 200 ns
- R&D will be started at CERN since 2019, which could benefit the IT of the NICA/MPD
- Production plan/strategy not defined yet

- ITS Frontend Electronics is subdivided into 192 Readout Unit (RU) modules, each connected to and control a stave and optically interfaced to the Common Readout Unit (CRU) and to the Central Trigger Processor (CTP)
- RU distributes trigger and control signals, interface data links to ALICE DAQ, control power supply of chips \geq
- China side can contribute to the R&D of readout electronics and high speed data transition for the NICA/MPD IT April 12, 2019

Involved Institutions:

China side:

- Central China Normal University (CCNU)
- Institute of High Energy Physics (IHEP/CAS)
- Institute of Modern Physics (IMP/CAS)
- University of Science and Technology of China (USTC)

Russian side:

- Joint Institute of Nuclear Research (JINR)
- Moscow State University (MSU)
- Saint-Petersburg State University (SPBU)

CERN side:

• Luciano Musa (ALICE resources support)

•

A Monolithic-Active-Pixel-Sensor-based Inner Tracker (IT) for the MPD Experiment at NICA A proposal submitted to MOST August 30, 2018 Proposing Organization: Central China Normal University Collaborating Institutions: Central China Normal University Feng Liu, Jun Liu, Daming Sun, Xhangming Sun Kai Wang, Taping Wang, Nu Xu, students Institute of Modern Physics, CAS Zhankui Li, Ti Qian, Haibo Yang, Yapeng Zhang, Changxin Zhao, students Joint Institute for Nuclear Research, Dubna, RF Turi Murin, Tatiana Andreeva, Dmitry Dementey, Vladimir Elsha, Anatoly Kolochvari, Tatiana Semchukova, Alekaei Sheremetev, Mikhail Shitenkov, Nikita Sukhov, Alekset Voronin University of Science and Technology of China Changqing Feng, Tifei Zhang + 2 students Proposal Draffer: Dr. Yaping Wang (CCNU) Phone: +86 136 9733 2703 +86 27 6786 6741 Email: wangyaping@mail.ccnu.edu.cn Dr. Yuri Marin (JINR) Phone: +7 49621 63992 Email: murin@jmr.ru

Technical goals:

- 1) master techniques for design & production of the state-of-the-art MAPS technology
- 2) master techniques for constructing the high-tech vertex detector within China
- 3) master the necessary techniques for operation of the vertex detector including calibration, daily running and maintenance

Plan & Effort from China for the NICA/MPD IT

NICA-China Consortium Pre-proposal to MOST

The Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia will provide high luminosity hadron-nucleus and nucleus-nucleus collisions over the center-of-mass energy range of 4-11 GeV per nucleon-nucleon pair in collider mode. The main physics goals of NICA are to create and study a new state of matter at high baryon density and to search for exotic particles. The physics to be addressed include hadron-QGP (quark-gluon plasma) phase transition, the critical point of the QCD (quantum chromodynamics) phase diagram, the interactions among quarks and gluons and their hadronization process, and the initial state and the evolution of the early universe. These physics goals represent human's next quest for the understanding of the inner working of nature, beyond the levels of atoms and nuclei, and are of fundamental importance.

The Multi-Purpose Detector (MPD) experiment at NICA is a collider experiment, composed of several detector subsystems, including Silicon-based Inner Tracking System (IT), the Time Projection Chamber (TPC), the Time-Of-Flight (TOF), the Electromagnetic Calorimeter (ECAL) and etc. Some of these detectors (e.g. ECAL) have not been built, and some others will need upgrade in readout electronics. In order to fully realize the physics goals, a complete suite of the detector subsystems is essential. Equally essential are the accelerator and energy storage technologies. We therefore propose and seek funding for the following projects (total ¥268 million):

- Development and construction of ECAL (estimated cost ¥100 million RMB): Led by Tsinghua University (Coordinator: Yi Wang)
- Development of endcap TOF and electronics (estimated cost ¥25 million RMB): Led by University of Science and Technology of China (Coordinator: Zebo Tang)
- Development and construction of IT (estimated cost ¥50.75 million RMB): Led by Central China Normal University (Coordinator: Yaping Wang)
- ECAL front-end readout chip design and production (estimated cost ¥13 million RMB): Led by Central China Normal University (Coordinator: Xiangming Sun)
- Theory (estimated cost ¥5 million RMB): All participating theory groups (Contact person: Zuotang Liang)
- Detector and physics simulations (estimated cost ¥4.25 million RMB): Led by Tsinghua University (Coordinator: Zhigang Xiao)
- Design, manufacture and test of SMES (estimated cost ¥29.38 million RMB): Led by Institute of Plasma Physics CAS (Coordinator: Jinxing Zheng)

Pre-proposal submitted to MOST in 2018

Cooperation Agreement for the Silicon Pixel Detector in 2019-2025

Cooperation Agreement between the JINR/NICA Megaproject and the Key Laboratory of Quark and Lepton Physics of Ministry of Education (MOE) of China at Central China Normal University (CCNU)

On the joint evaluation technologies for developme systems for the experiment 2019-2

This is hereby to declare that the Parties agree to the all terms in the agreement for the cooperation on the JINR/NICA MPD project.

Cooperation Agreement for the Silicon Pixel Detector in 2019-2025

The JINR/NICA Megaproject

And

1

September 21, 2018

Prof. Vladimir Kekelidze Vice Director, IINR Dr. Nu Xu Dran of the Key Laboratory of

MOE (CCNU), Wuhan

 CCNU-JINR cooperation agreement on MPD/IT signed in 2018

Cost estimate (2019~2023):

This is a joint project between China and Russia, with roughly equal contributions (China \$8.12M USD, Russian \$8.2M USD)

Timeline:

Timeline	Tasks	
2019	 infrastructure and tooling/jigs preparation Simulation, CDR, TDR 	
2020	 R&D of MAPS chips and FPCs Readout electronics R&D (e.g. high speed, radiation hard Data Transmission Channel) Chip / FPC mass production (ALPIDE) 	
2021	 Stave development & mechanics Global mechanics development OB HIC/stave mass production 	
2022	 Readout production OB HIC & stave mass production IB HIC / Stave R&D 	
2023	 Installation, Integration, commissioning, etc. IB HIC/Stave R&D, prototyping 	
April 12, 2019	ITS Plan for the NICA/MPD – Y. Wang	1

- Consortium within China need to be constructed
- Consortium between China and Russia also need to be constructed
- Regular workshop/meeting with all involved institutions (every half year or shorter) to be organized
- Infrastructure/jigs preparations (including HIC and stave assembly and testing) for detector construction sites
- Technician training on detector (HIC/stave) assembly & testing
- Readout electronics, data transition, ...
- Databases preparation, construction and running for the materials, assembly, testing
- Testing software, online/offline software ...
- All the above items need to be clear and detailed discussions

Contribute to the ALICE/ITS upgrade at LS2
 ALPIDE chip design: (1) Matrix readout architecture; (2) Pixel analog front-end revision and optimization.
 ITS OB HIC assembly R&D, construction, and testing

 Clean room commissioning in Nov. 2016
 Assembly R&D and technician training in 2017
 Pre-series production started in Dec. 2017
 Series production started in April 2018, to be ended in

May 2019 (2~3 HICs/day, ~450 HICs in total) ✓ Commissioning, calibration and alignment since 2019

April 12, 2019

team for ITS3 (ALICE Upgrade beyond 2020, LS3)

Wafer-scale pixel sensor chip with spatial resolution better than 3 um and a time resolution of the order of 200 ns

April 12, 2019

 R&D on wafer-scale MAPS chip design with CERN team for ITS3 (ALICE Upgrade beyond 2020, LS3)

Wafer-scale pixel sensor chip with spatial resolution better than 3 um and a time resolution of the order of 200 ns

ALICE/ITS Chip Design / HIC Assembly R&D (CCNU) : Chaosong, Ping, Mangmang, Shuguang

ALICE/ITS OB HIC Assembly Team (CCNU) : Biao、Jun、Daming、Kai、Peipei、Wenjing

Yuri Murin, YPW, Johann Heuser @ CCNU, Sept., 2017

1. Chip Alignment

4. Wire-bonding

2. FPC preparation & glue spreading

5. Qualification & endurance testing

3. Pre-curing & fully curing

6. Assembled ITS OB HIC

Feasibility Effort on the MPD/IT from IMP

- SLIMP (Silicon Lab at IMP)
- > Interests in MPD: Pixel Chip design, readout electronics, detector packaging and test

- ~4 million has been invested to build the lab (Phase 1)
- ISO6 (~25m²), ISO7 (~35m²) and System lab (~70m²)
- Manufacture line for pixel detector: bonding machine, pull tester, dicing saw, probe station …

Feasibility Effort on the MPD/IT from IMP

Pixel Chip design

- Topmetal-M (With CCNU)
- Size: 3cm x 1.5cm
- Spatial Resolution: ~10um
- Pixel Array: 500 x 210
- Based on 0.13um Process from Huahong Corporation
- Design will be finished at the end of April, 2019

Key Logic R&D for future Pixel Chip

High Performance Sensing Node
 April 12, 2019

Low power Collum ADCITS Plan for the NICA/MPD – Y. Wang

Fast Centroid Finder

Feasibility Effort on the MPD/IT from IMP

Front-end Electronics for pixel detector (MAPS and Topmetal)

Common Readout Electronics for particle experiments (HCRU and CDAU)

- MAPS-based Inner Tracker has been proposed to be constructed for the NICA/ MPD, and it's scheduled to install the 2-layers outer barrel in its 1st phase (before 2023)
- Pre-proposal from China side has been submitted to the MOST for funding support, seems very positive!
- Infrastructure preparation and technician training with the support of ALICE ITS upgrade project will be discussed
- Facilities are under construction from China institutions, and CCNU team can transferred to MPD/IT project after the ALICE ITS upgrade.

Thanks for your attention!