

CBM cave

4th CBM – China Workshop Yichang April 12 – 14, 2019

Norbert Herrmann

https://www.youtube.com/watch?v=ayrjkV8kr48

THERE THINK SAME AND AND

Facility for Antiproton & Ion Research

Motivation: QCD phase diagram

CBM day-1 setup CBM day-1 measurements FAIR Phase-0 projects: (HADES) mCBM STAR BM@N

CBM physics and observables

QCD equation-of-state

- collective flow of identified particles
- particle production at threshold energies

Phase transition

- excitation function of hyperons
- excitation function of LM lepton pairs

Critical point

event-by-event fluctuations of conserved quantities

Chiral symmetry restoration at large μ_B

- in-medium modifications of hadrons
- meson-baryon coupling •
- dileptons at intermediate invariant masses

Strange matter

- (double-) lambda hypernuclei
- Search for meta-stable objects (e.g. strange dibaryons)

Heavy flavour in cold and dense matter

excitation function of charm production

Eur.Phys.J. A53 (2017) 60

Rate capability of experiments

CBM's unique feature: High statistics measurement of rare probes

CBM Day-1 experimental setup

- Tracking acceptance: $2^{\circ} < \theta_{lab} < 25^{\circ}$
- Free streaming DAQ
- R_{int} = 10 MHz (Au+Au)

 $\begin{array}{l} R_{int} \approx 0.5 \; MHz \\ \mbox{full bandwith:} \\ \mbox{Det.} - \mbox{Entry nodes} \\ \mbox{reduced bandwidth} \\ \mbox{Entry nodes} - \mbox{Comp. farm} \end{array}$

with R_{int} (MVD)=0.1 MHz

Software based event selection

Day-1 funding: ~ 90% secured

Day-1 setup = MSV setup - Compute Performance - ECAL

TDRs

#	Project	TDR Status		
1	Magnet	approved 2013		
2	STS	approved 2013		
3	RICH	approved 2014		
4	TOF	approved 2015		
5	MuCh	approved 2015		
6	PSD	approved 2015		
7	TRD	approved 2018		
8	MVD	submission 2020		
9a	Online Systems: DAQ	submission 2020		
9b	Online Systems: FLES	submission 2023		
10	ECAL	submission t.b.d.		

Day-1 target date: summer 2024

Micro Vertex Detector (MVD)

IKF Frankfurt, IPHC Strasbourg, Pusan National Univ. + CCNU Wuhan, IMP Lanzhou

- Background suppression for di-electron measurements
- Determination of secondary vertices of open charm decays
- Improved tracking for hyperon-ID, enables missing mass method

Status:

- MIMOSA sensor technology applicable after 10 years of joint development
- Steps toward final sensor identified: Q4,'17 MIMOSIS-0 diff pixel design, Q2,'20 MIMOSIS-2: 2nd prototyp,
- Q4,'19 MIMOSIS-1: 1st prototype of complete sensor MIMOSIS-3: final sensor pre-production 2021

 \succ TDR to be submitted in 2020

MVD: MIMOSIS-0/1

First generation sensor MIMOSIS-0 is being tested:

- Response to Fe-55 seems ok.
- Noise as expected.
- Signal shape as expected.
- Signal rise time: ~1µs
- Dead time: <10µs (more than readout time)

Radiation tolerance tests ongoing:

- Modest tuning of slow control parameters needed up to 1 Mrad.
- No substantial features for higher doses observed so far.
- Mild issue on DACs observed and understood, will be fixed.

Next steps (mid 2019):

- CBM Internal sensor design review.
- Submission of full size prototype (MIMOSIS-1).
- Integrate stations based on MIMOSIS-1 to mCBM.
- Start extensive radiation tolerance (e.g. SEE) test program.

,Double modified process":

Add shaped deep n-implantation

=> Full depletion + lateral fields.

=> May allow for >>10¹⁴ n_{eq} /cm² rad. tolerance

CBM MSV vs. Day-1

Setup	Subsystems	Average Rate (max)		Event size
		MSV	Day-1	
Hadron	STS, TRD, TOF	5 MHz	0.5 MHz	50 kB
Electron/ Hadron	MVD, STS, RICH, TRD, TOF, PSD	0.1 MHz	0.1 MHz	75 kB
Muon	STS, MUCH, TRD, TOF	5 MHz	0.5 MHz	30 kB

Day-1 electron setup offers final rate capability for di-electrons (due to MVD rate limitations).

No sophisticated online selection (trigger) planned for Day-1.

Dileptons as probes for dense matter (Day-1)

Figure:

T. Galatyuk

- LMR: ρ – chiral symmetry restoration fireball space - time extension
- IMR: access to fireball temperature ρ -a₁ chiral mixing

Measurement program: excitation function of LMR – excess excitation function of IMR – slope (non – monotonic behavior ?)

Day-1 di-electron measurement

Physics Topic: Chiral Symmetry restoration, phase transition

- 1M Au+Au (b=0 fm), 8A GeV
- IMR: S/B > 1/100
- Statistical accuracy for T_{eff} of 10% requires 10¹¹ events, ~ 20 days of beamtime
- CBM will be the first experiment to use di-leptons for systematic measurements.

Day-1 di-muon measurement

Physics Topic: Chiral Symmetry restoration, phase transition

- Performance similar to di-electron setup
- First measurement in SIS100 energy range
- Different systematic errors from di-electron setup <-> cross check of results

Subthreshold particle production

High rate case: AA - hypernuclei

Thermal model prediction for Au+Au

Runtime estimate at peak interaction rate of 10 MHz

Signal counts per week:

$$S_w = R_{peak} * f_{av} * \epsilon_{duty} * P_{prod} * f_{mb/cen} * BR * \epsilon_{reco} * \Delta T$$

 $= 10^7 * 0.5 * 0.7 * 10^{-7} * 0.25 * 0.1 * 0.012 * 6 10^5$
 $= 60$

Decay topology

CBM data processing system

Reaction rate Au + Au:

10⁷ collisions per second

Data rate:

~ 1 TB/s

Main features:

- radiation tolerant detectors and front-end electronics
- free streaming (triggerless) data with time stamps,
- software based event selection

Norbert Herrmann

4th CBM - China Workshop, Yichang, Apr. 12 - 14, 2019

CBM Phase-0 Project: mCBM

mFLES racks @ Green IT

Demonstrator for full CBMdata taking and analysis chain under full load (Au-Au, 10⁷ interactions/s)

Requested beam time was fully granted by G-PAC

mCBM setup (as of March 25, 2019)

mCBM data transport

mSTS - Status

CBM

- demonstrator to validate
 - module and ladder assembly
 - read-out electronics
 - powering, electronics cooling
 - further integration aspects
 - first tracking station built in two steps (4 modules on 2 ladders)
- complete r/o chain, running in common mCBM data stream:
 - multiple FEB-8, C-ROBs, AFCK
- issues under study:
 - finite functional ASIC yield after ladder test and integration
 - noise in complete system
 - STS-XYTERv2.1 validation

mCBM data 2019

High multiplicity mTOF event

Time Coincidence with T0 in run 99

Example of T0 (diamond) count rate

- Available interaction rate: $R_{int} > 2 \times 10^{6} Hz$
- Synchronisation of active subsystems demonstrated

mCBM program:

Q1 2019 detector & daq commisioning

Q1 2020 high rate demonstrator

Q1 2021 physics benchmark (Λ – prod)

Q1 2022 Λ – excitation function

Norbert Herrmann

4th CBM - China Workshop, Yichang, Apr. 12 - 14, 2019

mCBM performance benchmark

(Sub)threshold Λ – baryon reconstruction.

Event based MC simulation of 10⁸ events (equivalent beam-on-target time: 10 s)

Acceptance

&

Efficiency

4th CBM - China Workshop, Yichang, Apr. 12 - 14, 2019

Phase-0: eTOF & HPC software in STAR (BNL)

Test module operational
STAR DAQ interface(Oct. 2016)Full sector test(Jan. 2017)Full sector test(Spring 2018)Wheel installation(Fall 2018)BES II data taking(2019/2021)Transfer of modules to FAIR(2022/23)

Status eTOF@STAR

STAR – BES II physics program with eTOF

Topics to be studied with extended acceptance in energy range $\sqrt{s_{NN}} = 3 - 62$ GeV:

- Excitation function and phase-space distributions of hyperons, hypernuclei, anti-protons, ...

 — Equilibration, phase transitions
- ➤ Collective Flow (v1, v2) → Equation-of-State, phase transitions
- Dilepton yields
 - \rightarrow Chiral symmetry restoration
- Fluctuations of conserved quantum numbers (baryon, charge, strangeness)

 \rightarrow Critical point

Expected increase in signal strength:

4th CBM - China Workshop, Yichang, Apr. 12 - 14, 2019

Phase-0: STS & PSD in BM@N (JINR)

PSD calorimeter (synergies with usage in NA61/shine)

(Eur. Phys. J. A (2016) 213

- 2018 Installation of PSD detector (MoU signed)
- 2022 Au beams from Nuclotron Installation of 4 Si Tracking Stations (MoU signed)

Participating CBM groups: GSI Darmstadt, Univ. Tübingen, JINR Dubna, INR Moscow

CBM – Collaboration: 63 institutions, ~500 members

China:

CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Chongqing Univ.

Czech Republic: CAS, Rez Techn. Univ. Prague

France: IPHC Strasbourg

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI Darmstadt** Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf KIT Karlsruhe München TU Münster Univ. Tübingen Univ. Wuppertal Univ.

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ.

JAPAN KEK Tsukuba Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest

Hungary:

KFKI Budapest Eötvös Univ.

Russia:

IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow VBLHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow PNPI Gatchina SINP MSU, Moscow

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

Severe shortage in key areas

- Firmware development
- Development of DPF (data processing framework): CBMROOT \rightarrow CBMMQ
- Software QA

Strategy:

- Register working group members to coordinators / project leaders (PL)
- Coordinators / PL will maintain list of participants (relevant for author list)
- Coordinators / PL & MB will (have to) define priorities
- Enlarge workforce by participation in new initiatives (EU, bi-lateral, ...)

Introduce service tasks \rightarrow details to be worked out by MB

Conclusion

- CBM has well defined FAIR phase 0 programs preparing the operation at SIS100 combined with a rich physics potential:
 - HADES with CBM RICH photon detector
 - CBM TOF, CBM HPC software in BES II run of STAR @ RHIC
 - CBM STS, CBM PSD in BM@N
 - mCBM at SIS18
- CBM Day-1 experiment offers start of unique measurements at SIS100:
 - Multiple strange hyperon measurements at higher SIS100 energies
 - Single Λ hypernuclei properties (lifetime)
 - Dilepton excitation function measurements with initial focus on LMR
- CBM MSV addresses the complete set of physics observables

to map out the phase structure of QCD in the SIS100 energy range and to search for exotic objects (e.g. double Λ – hypernuclei).

Acknowledgements

MVD Highlights 10/18 – 3/19

MIMOSIS:

- MIMOSIS-0: Evaluation of analog and digital features, focus on radiation hardness
- MIMOSIS-1: Preparation of a 1-day design review

Geometries and detector layout

- CAD design of the detector in the target box
- Consolidating 2 MVD geometries (VX, TR)
- CBM Technical Note TN-19004

Simulations on hit rates

- CBM Technical Note TN-19002
- Employing actual geometries and sensor properties

Integration & DCS

- PRESTO 24/7 in vacuum (3 months)
- Continuous DCS ctrl & sensor (M26) r/o

Silicon Tracking System (STS)

GSI Darmstadt, JINR Dubna, KIT Karlsruhe, JU Crakow, AGH Crakov, KINR Kiev, Univ. Tübingen, Warsaw UT

Charged particle track reconstruction, momentum determination

Engineering design of station

8 STS in thermal enclosure, 2.133 M channels

Status:

- > TDR approved by FAIR in July, 2013
- > Radiation tolerance of sensors tested up to n_{eq} (1 MeV) = 2 × 10¹⁴ /cm²,
- Readout ASICS STS-XYTER V 2.1 produced,
- Sensors ordered (HAMAMATSU): Q2 2019
- System integration concept close to final.

MUCH; status report

- Two GEM chambers took data in mCBM with MUCH-XYTER based readout and full DAQ; Prelim analyses show clear spill structure and time correlation
- Radiation resistant LV and HV distribution systems developed and deployed in mini-CBM
- Low-resistivity single-gap RPC tested with MUCH-XYTER in GIF++ as R&D for 3rd and 4th stations
- Design of the mechanical integration of the system is ongoing

Two GEM chambers in mini CBM

Spill structure by GEM

Time-correlation between TOF and GEM

Norbert Herrmann

4th CBM - China Workshop, Yichang, A

RICH Detector

- Successful upgrade and full beamtime operation of the RICH detector in HADES
- Successful mRICH operation in mCBM
- Mechanical stability test of mirror wall, shielding box optimization

TRD: Recent Achievements

- Technical Design Report approved by ECE on October 9th, 2018
- CERN-GIF++: High rate gamma irradiation (¹³⁷Cs source). No deviation from expected linear increase of HV current with trigger rate seen (s. Fig.)
- X-ray test setup (Bucharest) High intensity x-ray setup with complete readout chain (FASPRO).
 2-D position reconstruction of irradiated area (s. Fig.)

FairMQ Based Online Monitor

