4th CBM-China @ Yichang

Apr. 12~14, 2019

Vorticity and Magnetic Fields in Collisions at BES/FAIR/NICA Energies

Outline

- Brief Introduction
- Vorticity and Spin Polarization
- Magnetic Field at Low Collision Energy
- Discussions & Outlook

INT Program 2020

Chirality and Criticality: Novel Phenomena in Heavy Ion Collisions

May 11 – June 5, 2020

Organizers: J. Liao, M. Stephanov, H.-U. Yee, Z. Xu

An Upcoming Review

200

STAR BES-II 2019 - 2021

100

Heavy Ion Collision

Interaction Rates (Hz)

ALICE

SPHENIX

100

Introduction

A Fluid of Spin

A nearly perfect fluid

What happens to the spin DoF in the fluid???

Extreme Vorticity & EM Fields

Large angular momentum -> the most vortical fluid

Extreme Vorticity & EM Fields

The angular momentum together with large (+Ze) nuclear charge —> the strongest magnetic field!

Novel Phenomena: "Fluid Spintronics"

STAR Collaboration, Nature 2017

Chiral Magnetic Effect (CME)

Exp. Search for CME

Most measurements based on: gamma correlator + certain procedure to fight backgrounds

Slide from Fuqiang Wang @ Chirality 2019

Isobaric Collisions @ RHIC

New opportunity of potential discovery: Isobaric Collision @ RHIC

~2 billion data collected successfully in RHIC 2018 run; processing and analysis underway!

Real Near-Term Opportunity: Isobaric Collisions

Nuclear Physics News

ISSN: 1061-9127 (Print) 1931-7336 (Online) Journal homepage: https://www.tandfonline.com/loi/gnpn20

feature article

Isobar Collisions at RHIC to Test Local Parity Violation in Strong Interactions

D. E. Kharzeev 1,2 and J. Liao 3

versus the background level (horizontal axis). One expects that a 5 σ observation of the local parity violation will be possible if the background contributes less than two thirds of the measured correlation.

This decisive experiment for the search of CME had just begun in the spring 2018 RHIC run. If a conclusive observation of CME is achieved, it would amount to the experimental discovery of the restoration of chiral symmetry in hot QCD matter and to the first direct experimental observation of the topological fluctuations in QCD. We will be holding our breath awaiting the outcome of this groundbreaking experiment.

D. E. KHARZEEV

Taylor & Francis

J. Liao

Interdisciplinary Interests

Chiral magnetic effect in ZrTe₅

Qiang Li^{1*}, Dmitri E. Kharzeev^{2,3*}, Cheng Zhang¹, Yuan Huang⁴, I. Pletikosić^{1,5}, A. V. Fedorov⁶, R. D. Zhong¹, J. A. Schneeloch¹, G. D. Gu¹ and T. Valla^{1*}

Condensed matter, cold atomic gases, neutron stars, cosmology, plasma physics, etc

Vorticity & Spin Polarization

Fluid with Angular Momentum

How does a many-body system cope with a sizable angular momentum?

Orbital motion (vorticity); Spin alignment (polarization).

Quantifying Fluid Rotation

$$\vec{\boldsymbol{\mathcal{N}}} \quad \vec{\boldsymbol{\omega}} = \frac{1}{2} \nabla \times \vec{\mathbf{v}}$$
$$\boldsymbol{\mathcal{N}} \quad \boldsymbol{\mathcal{N}} \quad \boldsymbol{\mathcal{M}} \quad \boldsymbol{\mathcal{M}} = \frac{1}{2} (\partial_{\nu} u_{\mu} - \partial_{\mu} u_{\nu})$$

Heavy ion collisions: $v \sim 0.1 c$ $\partial \sim \text{fm}^{-1}$ $\omega \sim 10^{22} \text{ s}^{-1}$

Issue: Spectators taking away lots of L ?! (will come back to this point later)

Rotating Quark-Gluon Plasma (2/3)

The local vorticity pattern is strongly influenced by the bulk flow. The averaged vorticity reflects the global orbital angular momentum.

Yin Jiang, Zi-Wei Lin, JL, PRC2016

Rotating Quark-Gluon Plasma (3/3)

Rotational Polarization (1/3)

Dirac Lagrangian in rotating frame:

Under slow rotation:

$$\mathcal{L} = \psi^{\dagger} \left[i\partial_0 + i\gamma^0 \vec{\gamma} \cdot \vec{\partial} + (\vec{\omega} \times \vec{x}) \cdot (-i\vec{\partial}) + \vec{\omega} \cdot \vec{S}_{4 \times 4} \right] \psi$$

$$\hat{H} = \gamma^{0}(\vec{\gamma} \cdot \vec{p} + m) - \vec{\omega} \cdot (\vec{x} \times \vec{p} + \vec{S}_{4 \times 4}) = \hat{H}_{0} - (\vec{\omega} \cdot \hat{\vec{J}})$$
Rotational

Rotational Polarization (2/3) $\hat{H} = \gamma^{0}(\vec{\gamma} \cdot \vec{p} + m) - \vec{\omega} \cdot (\vec{x} \times \vec{p} + \vec{S}_{4 \times 4}) = \hat{H}_{0} - \vec{\omega} \cdot \hat{\vec{J}}$

Rotational polarization effect!

For thermally produced particles: "equal-partition" of angular momentum

$$dN \propto e^{rac{ec{\omega}\cdotec{J}}{T}}$$

Rotational Polarization (3/3)

Jiang, Lin, JL, PRC2016; Shi, Li, JL, PLB2019

- * Important at low collision energy!!
- * Puzzle: why difference in hyperons and anti-hyperons??

Predictions for Smaller Systems

Polarization effect in CuCu and CuAU collisions should be sizable!

Shuzhe Shi, Kangle Li, JL, PLB2019.

Prediction for Polarization in CuCu and AuAu

Shuzhe Shi, Kangle Li, JL, arXiv:1712.00878.

Magnetic Field at Low Collision Energy

Magnetic Filed Induced Polarization

For Lambda:

$$\varpi_{\rho\sigma} \rightarrow \left[\varpi_{\rho\sigma} - 2\left(\frac{0.61}{2M_p}\right) \frac{eF_{\rho\sigma}}{T} \right]$$

For anti-Lambda:

$$\varpi_{\rho\sigma} \rightarrow \left[\varpi_{\rho\sigma} + 2\left(\frac{0.61}{2M_p}\right) \frac{eF_{\rho\sigma}}{T} \right]$$

[Yu Guo, Shengqin Feng, Shuzhe Shi, JL, in preparation.]

Magnetic Filed Induced Polarization

For this to work: Requires long-lived late time magnetic field.

Where does that come from??

[Yu Guo, Shengqin Feng, Shuzhe Shi, JL, in preparation.]

Connecting Magnetic Field and Fluid Rotation

[X. Guo, et al, arXiv:1904.04704]

Discussions & Outlook

QCD Phase Structures under Extreme Fields

Rotational Suppression of Scalar Pairing

Let us consider pairing phenomenon in fermion systems. There are many examples:

superconductivity, superfluidity, chiral condensate, diquark, ...

We consider scalar pairing state, with J=0.

$$\vec{S} = \vec{s}_1 + \vec{s}_2 \qquad \vec{J} = \vec{L} + \vec{S}$$

Rotation tends to polarize ALL angular momentum, both L and S, thus suppressing scalar pairing.

[Yin Jiang, JL, PRL2016]

Chiral Phase Transition

Maybe in low energy collisions: In-medium mass correction due to rotation??

Color Superconducting Pairing

Maybe also for nucleon-pairing?!

Isospin Matter

Spin-1 Rho condensation is favored by rotation!

[Hui Zhang, Defu Hou, JL, arXiv: 1812.11787.]

Large isospin density in low energy collision: Possible effect from rotation?

Directed Flow

It is important to understand directed flow and vorticity simultaneously.

Directed Flow

Possible nontrivial implications for vorticity/rotation at very low beam energy??

Forward/backward vorticity & polarization?!

Potential Signal of Chiral Vortical Effect (CVE)

Outlook

Nuclear matter under extreme fields (magnetic field and fluid rotation): Possibility of a very interesting and novel physics topical line at FAIR/NICA?!

Vorticity structure and

directed flow

- Magnetic field from rotation
- Vorticity-induced transport effects
- Mass shift / phase line shift
 due to extreme fields
- Isospin matter
- 40 Hadronic level effects

