Energy dependence of Cumulants of Net-Proton, Net-Kaon and Net-Charge Multiplicity Distributions in Au+Au collisions within JAM model

> Yu Zhang Central China Normal University 2019/4/14

Outline

- Motivation
- JAM model
- Calculation result
- Summary

Motivation

- Crossover at $\mu_B = 0$
- First order phase transition at non-zero μ_B ?
- An critical end point at the end of 1st order transition line?

Fluctuation of conserved quantities

• sensitive to correlation length(ξ). $\langle (\delta N)^2 \rangle \sim \xi^2, \langle (\delta N)^3 \rangle \sim \xi^{4.5}, \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \sim \xi^7$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
M.Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009).

• directly connected to susceptibility of the system

 net-baryon → net-proton net-strangeness → net-kaon net-charge

Higher Moments

• definition $N = N_{particle} - N_{anti-particle}$

•
$$C_1 = \langle N \rangle$$
 $\delta N = N - \langle N \rangle$

•
$$C_2 = \langle (\delta N)^2 \rangle$$

•
$$C_3 = \langle (\delta N)^3 \rangle$$

•
$$C_4 = \langle (\delta N)^3 \rangle - 3 \langle (\delta N)^2 \rangle^2$$

- reflect the shape of certain distribution
- reflect non-gaussian distribution gaussian distribution is zero at higher order(>2)

cumulant ratios :

$$S\sigma = \frac{C_3}{C_2}, \kappa\sigma^2 = \frac{C_4}{C_2}$$

.

S. Ejiri et al,Phys.Lett. B 633 (2006) 275.

Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) The 4th CBM-China Workshop S. Gupta, et al., Science, 332, 1525(2011).

A. Bazavov et al., PRL109, 192302(12)

In Experiment

- Non-monotonic energy dependence of Net-Proton's $\kappa\sigma^2$ observed.
- Weak energy dependence in net-charge and net-kaon results within errors

STAR, PRL105,022302;; PRL112,032302 (2014).
X. Luo (for STAR Coll.), PoS CPOD2014 (2015) 019
Phys. Rev. Lett. 113 092301 (2014). Phys. Lett. B 785,)551)(2018).

In Experiment

 How will non-critical effects influence net-p, net-k and net-q fluctuation in model ? Resonance weak decay Hadronic scattering

JAM Model

- Microscopic transport model
- From initial stage to final state of interaction
- Particles have explicit space-time trajectories

PHYSICAL REVIEW C, VOLUME 61, 024901 http://www.aiu.ac.jp/~ynara/jam/

Data Production Detail										
Au+Au										
\sqrt{S}/GeV	7.7	11.	5	14.5	19.6	27	39	62.4	200	
Events/10 ⁶	2.6	2.6		2.6	2.6	2.6	2.6	2.6	1	
Impact parameter : $0 \le b \le 3$ fm (roughly corresponds to $0-5\%$)										
Default configurtion			Resonance weak decay off				Elastic scattering off (keep inelastic scattering)			

Calculation Detail								
Net-Proton	Net-Kaon	Net-Charge						
y <0.5	y <0.5	$ \eta < 0.5$						
$0.4 < p_T < 2.0$	$0.2 < p_T < 1.6$	$0.2 < p_T < 2.0$						
Most central (0-3fm)								
Centrality bin width corrected								
statistical error calculated by Delta theorem (Phys. Rev. C91, 034907)								

Result - Part 1

Event by event distribution of net-proton

- A broadened particle number distribution under larger energys.
- Turning off weak decay suppresses proton production clearly.
- Left shift of distribution in higher energys.

dN/dy distribution of net-proton

• Proton and anti-proton have smaller difference at larger energy in mid-rapidity region.

Rapidity dependence of net-proton cumulants

The 4th CBM-China Workshop

Part 2 – Energy Dependence of Cumulants

• Turning off resonance weak decay suppresses net-proton cumulants in first 3 order cumulants.

- Elastic scattering shows little influence on all 3 net-particle cumulants
- Weak decay and elastic scattering show no big influence on net-kaon and net-charge cumulants. The 4th CBM-China Workshop

Energy Dependence of Cumulant Ratio

• $\kappa\sigma^2$ is around unity within reasonable statistical errors which is consistent with Poisson baseline.

- no significant difference found when turning off weak decay and baryon elastic scattering.
- $\kappa\sigma^2$ shows no significant energy dependence. The 4th CBM-China Workshop

Summary

- Present calculation of net-proton, net-kaon and net-charge cumulants and cumulant ratios up to 4th order under JAM model
- Turning off Weak decay suppresses proton and anti-proton production, and make little difference to net-kaon and net-charge.
- Net-particle number's $\kappa \sigma^2$ are around unity and shows no remarkable energy dependence.

Thank you!