

XYZ states at BESIII

Pei-Rong Li (李培荣)

LanZhou University

On behalf of the BESIII Collaboration

2019.07.29 @ IMU

Outline

Charmonimulike states

• The Y states $(J^{PC}=1^{--})$

- The Z_c states (I=1&decays into $c\bar{c}$)
- The X(3872)&X(3915) ($J^{PC}=1^{++}$)

Summary

BESIII data Samples

2015: R-scan from 2-3 GeV + 2.175 GeV data

2016: ~3fb⁻¹ at 4.18 GeV (for D.)

2017. 500/pb each for 7 energy points between 4.19~4.28 GeV 400/pb around chic_c1 200/pb around X(3872)

2018,2019: J/psi nearby.

2020. More data taking between 4.6-4.7GeV

~130 points for R scan (~1.3 fb⁻¹)

> 10 fb⁻¹ above 4.0 GeV in total

6

Charmonium(like) spectroscopy

The Y states

measurements of more final states for the

Y and ψ states

Y(4260)/Y(4360) is found in $\pi^+\pi^-J/\psi/\pi^+\pi^-\psi(2S)$.

A peak around 4660 MeV is found both in $\pi^+ \pi^- \psi(2S)$ and Λc pair.

2019/7/29 The mass and width are consistent with each other .

Y(4660)

Y(4660) baryonic coupling is 10 times larger than mesonic coupling.

[PRD91, 112007 (2014)] [PRL101, 172001 (2008)]

A hidden charm Baryonium?

[PRL104, 132005 (2010)]

BESIII indicates different trend for energy dependence comparing with Belle.

[PRL120, 132001 (2018) [PRD96, 116001 (2017)]

More data from BESIII at threshold and above 4.6 GeV in the future.

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ cross section

Most precise cross section measurement for center-of-mass energy from 3.77 to 4.60 GeV;
 Fit I = |BW₁+BW₂*e^{iφ2}+BW₃*e^{iφ3}|² or Fit II =|exp+BW₂*e^{iφ2}+BW₃*e^{iφ3}|² (other fits ruled out);
 Compare with one Breit-Wigner fit, the significance of the second Breit-Wigner is 7.6σ;

≻ Y(4260)+Y(4360)? The first observation of Y(4360)→ $\pi^+\pi^- J/\psi$.

	<i>R</i> ₁	<i>R</i> ₂	Y(4260) [PDG2016]	Y(4360) [PDG2016]
M (MeV/ c^2)	4222.0±3.1±1.4	4320.0±10.4±7.0	4251±9	4346±6
G _{tot} (MeV)	$44.1 \pm 4.3 \pm 2.0$	$101.4^{+25.3}_{-19.7}\pm10.2$	120±12	102 ± 10

$e^+e^- \rightarrow \pi^+\pi^-h_c$ cross section

≻First precise cross section measurement from threshold to 4.6 GeV;

Fit with $|BW_1+BW_2*e^{i\phi}|^2$, two resonant structures are evident;

>Compare with one Breit-Wigner fit, the significance of the two Breit-Wigner fit is greater than 10σ ;

> The parameters of Y(4220) are consistent with those observed in $\pi^+\pi^- J/\psi$ around 4222 MeV.

	M (MeV/c ²)	G _{tot} (MeV)
Y(4220)	$4218.4^{+5.5}_{-4.5}\pm0.9$	$66.0^{+12.3}_{-8.3}\pm0.4$
Y(4390)	$4391.5^{+6.3}_{-6.8}\pm1.0$	$139.5^{+16.2}_{-20.6}\pm0.6$

BESII Improvement of $e^+e^- \rightarrow \pi^+\pi^-\psi'$

PRD 96, 032004 (2017)

- Data samples:
 - 16 energy points from \sqrt{s} =4.008 to 4.600 GeV.
 - The total integrated luminosity (L_{int}) is 5.1 fb⁻¹.
- Reconstructed modes: Mode I: $\Psi(3686) \rightarrow \pi^+ \pi^- J/\psi$, $J/\psi \rightarrow l^+l^-$ ($l=e/\mu$) Mode II: $\Psi(3686) \rightarrow neutrals+J/\psi$, $neutrals=(\pi^0\pi^0, \pi^0, \eta \text{ and } \gamma\gamma) J/\psi \rightarrow l^+l^-$ ($l=e/\mu$)

Parameters	Solution I	Solution II	=
$M(Y4220) (\mathrm{MeV}/c^2)$	4209.	5 ± 7.4	-
$\Gamma(Y(4220))$ (MeV)	80.1	± 24.6	
$\mathcal{B}\Gamma^{e^+e^-}(Y(4220)) (eV)$	0.8 ± 0.7	0.4 ± 0.3	
$\frac{M(Y4390)}{\Gamma(Y(4390))} (\text{MeV}/c^2)$	4383.	8 ± 4.2	Y(4360)?
$\Gamma(Y(4390))$ (MeV)	84.2	± 12.5	
$\mathcal{B}1^{e+e}$ (Y(4390)) (eV)	3.6 ± 1.5	2.7 ± 1.0	
ϕ_1 (rad)	3.3 ± 1.0	2.8 ± 0.4	
φ_2 (rad)	0.8 ± 0.9	4.7 ± 0.1	_

$$e^+e^- \to \pi^0 \pi^0 \psi(3686)$$
Phys. Rev. D 96, 032004 (2017)
Phys. Rev. D 96, 032004 (2017)
Phys. Rev. D 97, 052001 (2018)
Phy

- Y(4360) was observed and subsequently confirmed in e⁺e[−] → (γ_{ISR})π⁺π[−]ψ(3686) by BABAR, Belle, and BESIII, it is interesting to study the Y(4360) in π⁰π⁰ transition to ψ(3686) and to examine the isospin symmetry;
- $\succ \text{ Signal process: } e^+e^- \rightarrow \pi^0\pi^0\psi(3686), \psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \ell^+\ell^- (\ell = e \text{ or } \mu);$
- > 16 energy points from $\sqrt{s} = 4.008$ to 4.600 GeV, the total luminosity is about 5.2 fb⁻¹;
- > The result of cross section measurement is consistent with the charged mode from isospin symmetry.

 $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

➤ Most precise cross section measurement for center-of-mass energy from 4.05 to 4.60 GeV;

- Fit with a coherent sum of three-body phase space term (pink dashed triple-dot line) and two Breit-Wigner functions (green dashed double-dot line and aqua dashed line);
- > The statistical significance of two resonant assumption over one resonant assumption is greater than 10σ ;
- \succ M(Y(4220)) = (4228.6±4.1±6.3) MeV/c², Γ(Y(4220)) = (77.0±6.8±6.3) MeV.

Improve measurement $e^+e^- \rightarrow \omega \chi_{c0}$

- > This observation confirms and improves the previous result;
- Further experimental studies with higher statistics are needed to draw a more reliable conclusion on the nature of this structure.

Y(4260)→Y(4220): what is it?

Y(4220) appeared in $\omega \chi_{c0}$, $\pi^+ \pi^- J/psi$, $\pi^+ \pi^- \psi'$, $\pi^+ \pi^- h_c$, $D^0 D^{*-} \pi^+$ Mass~4220 MeV, Width~ 60 MeV!

$Y(4260) \rightarrow Y(4220)$

Parameters of the Peaks in e⁺e⁻ Cross Sections

Submit to Phys. Rev. D; arXiv: 1903.08126v1 [hep-ex]

 $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$

▶ We observe $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$ for the first time at 4.42 GeV;

There are hints for peaks at 4.04 and 4.13 GeV/c² at 4.42 GeV, while the statistical significance is low.
16

Submit to Phys. Rev. D; arXiv: 1903.08126v1 [hep-ex]

Three different decay channels $(D^0\pi^+\pi^-, D^{*+}\pi^-, \text{ and } D^+\pi^+\pi^-)$ are used to search for $D_1(2420)$, the neutral mode with $D_1(2420)^0 \rightarrow D^0\pi^+\pi^-$ is reported with statistical significance of 7.4 σ at 4.42 GeV.

Submit to Phys. Rev. D; arXiv: 1903.08126v1 [hep-ex]

The Y(4390) or the $\psi(4415)$ resonance or from any other resonance cannot be distinguished based on the current statistics.

- We study the $e^+e^- \rightarrow \phi \chi_{c0,1,2}$ at $\sqrt{s} = 4.60 \text{ GeV} (567 \text{ pb}^{-1})$, where $\chi_{c0} \rightarrow \pi^+\pi^-, K^+K^-, K^+K^-\pi^+\pi^-$, and $\pi^+\pi^-, \chi_{c1,2} \rightarrow \gamma J/\psi, J/\psi \rightarrow \ell^+\ell^-$ ($\ell = e \text{ or } \mu$), and $\phi \rightarrow K^+K^-$.
- ➤ No obvious $e^+e^- \rightarrow \phi \chi_{c0}$ signals are observed, the production $\sigma(e^+e^- \rightarrow \phi \chi_{c0}) < 5.4$ pb @ 90% C.L.;
- The first observation of $e^+e^- \rightarrow \phi \chi_{c1}$ and $\phi \chi_{c2}$, $\sigma(e^+e^- \rightarrow \phi \chi_{c1}) = 4.2^{+1.7}_{-1.0}$ pb and $\sigma(e^+e^- \rightarrow \phi \chi_{c2}) = 6.7^{+3.4}_{-1.7}$ pb;
- ► No obvious $e^+e^- \rightarrow \gamma Y(4140)$ signals are observed, $\sigma(e^+e^- \rightarrow \gamma Y(4140)) \times \mathcal{B}(Y(4140) \rightarrow \phi J/\psi) \downarrow 4$ 1.2 pb @ 90% C.L..

Phys. Rev. D 97, 071101(R) (2018)

► Measure the cross section of $e^+e^- \rightarrow KKJ/\psi$ at c.m energies from 4.189 to 4.600 GeV.

- ➤ The energy dependence of the cross section for $e^+e^- \rightarrow K^+K^-J/\psi$ is shown to differ from that for $\pi^+\pi^-J/\psi$ in the region around the Y(4260);
- ➤ The ratio of cross sections for $e^+e^- \to K^+K^-J/\psi$ and $e^+e^- \to K_S^0K_S^0J/\psi$ is consistent with expectations from isospin conservation.

The Z_c states

Observation of Zc(3900)

Observation of Zc(3900)

Observation of Zc(3900)

BESI Spin-parity of $Z_c(3900)$

PRL 119, 072001 (2017)

- Asymmetric line shape
- JP=1+ preferred over 0-, 1-, 2-, 2+ by at least 7σ.
- Significant f₀(980)
 contribution
- ππ D-wave
 fraction increases
 as E_{cm} increases

EESI Spin-parity of $Z_c(3900)$

PRL 119, 072001 (2017)

Z_c enhanced events show clear JP=1+ preference!

$Z_c(3900) \rightarrow \rho \eta_c$

arXiv: 1906.00831

A.Esposito et al, Phys. Lett. B 746, 194 (2015)

34

EPJC 73, 2561 (2013)

	$\sqrt{s} = 4.226 \mathrm{GeV}$	$\sqrt{s} = 4.258{\rm GeV}$	$\sqrt{s} = 4.358{\rm GeV}$	Type-I	Type-II	Molecule
$R_{Z_c(3900)}$	2.2 ± 0.9	< 5.6	•••	230^{+330}_{-140}	$0.27^{+0.40}_{-0.17}$	$0.046^{+0.025}_{-0.017}$
$R_{Z_c(4020)}$	< 1.6	< 0.9	< 1.4	6.6	$+56.8 \\ -5.8$	$0.010^{+0.006}_{-0.004}$

Observation of Z_c(4020)⁺

 $σ(e^+e^- → πZ_c → π^+π^-h_c):$ 8.7±1.9±2.8±1.4 pb @ 4.230 GeV 7.4±1.7±2.1±1.2 pb @ 4.260 GeV 10.3±2.3±3.1±1.6 pb @ 4.360 GeV

BESIII: PRL111, 242001

Simultaneous fit to 4.23/4.26/4.36 GeV data, 16 η_c decay modes. 8.9 σ $M(Z_{c}(4020)) =$ 4022.9±0.8±2.7 MeV; $\Gamma(Z_{c}(4020)) =$ 7.9+2.7+2.6 MeV Close to D*D* threshold Significance: 8.9σ [Z_c(4020)] No significant $Z_c(3900)$ (2.1 σ)

Observation of Zc(4020/4025)

Zc(3900)/Zc(4020) production cross section

 $Z_c(3900)^{\pm} \rightarrow (DD^{*})^{\pm}$, PRD92, 092006 $Z_c(3900)^0 \rightarrow \pi^0 J/\psi$, PRL115, 112003 $Z_c(3900)^{\pm} \rightarrow \pi^{\pm} J/\psi$, PRL119, 072001 $Z'_{c}(4020)^{\pm} \rightarrow \pi^{\pm}h_{c}, \text{PR111, 242001}$ $Z'_{c}(4020)^{\pm} \rightarrow \pi^{\pm}J/\psi : \text{PRL119, 072001}$ $Z'_{c}(4020)^{\pm} \rightarrow (D^{*}D^{*})^{\pm}: \text{PRL112, 132001}$ $Z'_{c}(4020)^{0} \rightarrow (D^{*}D^{*})^{0}: \text{PRL115, 182002}$

ESI Z_c in $e^+e^- \rightarrow \pi^+\pi^-\psi'$? PRD 96, 032004 (2017)

- A prominent narrow structure is observed in $\pi\psi(3686)$ mass spectrum for data at $\sqrt{s} = 4.416$ GeV.
- An S-wave Breit-Wigner fit function is performed on the Dalitz plot of $M^2(\pi^+\psi(3686))$ versus $M^2(\pi^-\psi(3686))$

$$\frac{p \cdot q/c^2}{(M_R^2 - x)^2 + M_R^2 \cdot \Gamma^2/c^4} + \frac{p \cdot q/c^2}{(M_R^2 - y) + M_R^2 \cdot \Gamma^2/c^4}$$

• The fit yields a mass of M=4032.1 \pm 2.4 MeV/c² and a width of Γ =26.1 \pm 5.3 MeV, with a significance of 9.2 σ

Different behavior between high and low $M^2(\pi^+\pi^-)!$

Search for a strangeonium-like structure Z_s decaying into $\phi \pi$ and a measurement of the cross

2019/7/29

The X state

What have we known about X(3872)?

- Mass
 - $3871.68 \pm 0.17 \text{ MeV}/c^2$
 - $B_E = 0.01 \pm 0.20 \text{ MeV}/c^2$
- Width
 - < 1.2 MeV
- $J^{PC} = 1^{++}$
- Production
 - In $pp/p\bar{p}$ collision
 - In B decays
 - In Y decays
- Decay
 - $\pi^{+}\pi^{-}J/\psi$ and $\omega J/\psi$
 - $\gamma J/\psi$ and $\gamma \psi(3686)$
 - $D^0\overline{D}^{*0} + c.c.$

- What is it?
 - Loosely $D^0\overline{D}^{0*}$ bound state?
 - Mixture of χ_{c1} and $D^0 \overline{D}^{0*}$?
 - Cusp?
 - Tetraquarks?

D^o-D^{*o} "molecule"

Diquark-diantiquark

Besili Observation of
$$e^+e^- \rightarrow \gamma X(3872)$$

N=1818; Δ M=0.34±0.04 MeV; $\Delta \sigma_{M}$ =1.14±0.07 MeV

 $N(X(3872)) = 20.1 \pm 4.5$ **6.30** PRL 112, 092001 (2014) $M(X(3872)) = 3871.9 \pm 0.7 \pm 0.2 \text{ MeV}$ [PDG: 3871.68 ±0.17 MeV]

B€SⅢ Observation of $e^+e^- \rightarrow \gamma X(3872)$

◦ PRD 77, 014013 (2008): $\Gamma(\chi_{c1}(3872) \rightarrow \pi^0 \chi_{c1}) \sim 0.06 \text{ keV}$ in case of a conventional $c\overline{c}$

o combining 3.2% < $Br(\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi)$ < 6.4% with $R_1 = 0.88$ would imply *cc*̄-state with Γ_{tot}($\chi_{c1}(3872)$) ~ 1.0 − 2.0 keV → strongly disfavors *cc*̄ interpretation

2019/7/29

$$e^+e^- \rightarrow \gamma X, X \rightarrow \omega J/\psi$$

BESIII, PRL122, 232002 (2019)

- Use 11.6/fb with \sqrt{s} =4.0~4.6 GeV.
- Observed $X(3915) \rightarrow \omega J/\psi$ with significance 3.1σ .
- *X*(3915) mass: 3926.4± 2.2±1.2 MeV or 3932.6±8.7±4.7 MeV.
- X(3915) width: $3.8 \pm 7.5 \pm 2.6$ MeV or $59.7 \pm 15.5 \pm 3.7$ MeV.

 $e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow \omega J/\psi$

BESIII, PRL122, 232002 (2019)

• Fitting cross section of $e^+e^- \rightarrow \gamma X(3872)$, $X(3872) \rightarrow \omega J/\psi$ and $e^+e^- \rightarrow \gamma X(3872)$, X(3872), $X(3872) \rightarrow \pi^+\pi^- J/\psi$ to study Y(4220).

• R= $\frac{\mathcal{B}(X(3872) \rightarrow \omega J/\psi)}{\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)}$ =1.6^{+0.4}_{-0.3} ± 0.2, roughly agree with BaBar measurements.

Study of $X(3872) \rightarrow \gamma J/\psi, \gamma \psi(3886)$

Requirement:

 $cos\theta_{\gamma} \in [-0.7, \ 0.7] \text{ in } J/\psi \to e^{+}e^{-}$ $|M(\gamma_{L}\gamma_{H}) - m_{\pi^{0}(\eta)}| > 0.02(0.03) \text{ GeV/c}^{2}$ $|M(\gamma_{L}J/\psi) - m_{\chi_{c1,2}}| > 0.02 \text{ GeV/c}^{2}$

Simultaneous fit; significance $> 3.5\sigma$

Requirement:

 $|M(\gamma_L \gamma_H) - m_{\pi^0(\eta)}| > 0.02(0.03) \text{ GeV/c}^2$ $|M(\pi^+ \pi^-)_{recoil} - m_{\psi(3686)}| > 0.01 \text{ GeV/c}^2$

Simultaneous fit; no evident signal

• R= $\frac{\mathcal{B}(X(3872) \rightarrow \gamma \psi(3686))}{\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)}$ <0.59 at 90% C.L., agree with LHCb measurements.

Study of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ and $\gamma D^+ D^-$

 \triangleright Significance > 7.4 σ

No evident signal for $\gamma D^+ D^-$

Using the same way in Ref. [PRL **112**, 092001(2014)] to reconstruct $X(3872) \rightarrow \pi^+\pi^- J/\psi$ as the reference channel.

Absolute branching fraction of X(3872)

Index (i)	Parameters	Values	Experiments
	$X(3872) ightarrow \pi^+\pi^- J/\psi$	$(\times 10^{-6})$	
1	$B^+ \rightarrow X(3872)K^+$	$8.61 \pm 0.82 \pm 0.52$	Belle [10]
2		$8.4\pm1.5\pm0.7$	BaBar [<u>11</u>]
3	$B^0 ightarrow X(3872) K^0$	$4.3\pm1.2\pm0.4$	Belle [<u>10</u>]
4		$3.5\pm1.9\pm0.4$	BaBar [<u>11]</u>
	$X(3872) \rightarrow \gamma J/\psi$	$(\times 10^{-6})$	
5	$B^+ \rightarrow X(3872)K^+$	$1.78^{+0.48}_{-0.44}\pm 0.12$	Belle [<u>18</u>]
6		$2.8\pm0.8\pm0.1$	BaBar [<u>19</u>]
7	$B^0 \rightarrow X(3872) K^0$	$1.24^{+0.76}_{-0.61}\pm 0.11$	Belle [<u>18</u>]
8		$2.6\pm1.8\pm0.2$	BaBar [<u>19</u>]
	$X(3872) \rightarrow \gamma \psi(3686)$	$(\times 10^{-6})$	
9	$B^+ \rightarrow X(3872)K^+$	$0.83^{+1.98}_{-1.83}\pm0.44$	Belle [<u>18</u>]
10		$9.5\pm2.7\pm0.6$	BaBar [<u>19</u>]
11	$B^0 \rightarrow X(3872) K^0$	$1.12^{+3.57}_{-2.90}\pm 0.57$	Belle [<u>18</u>]
12		$11.4\pm5.5\pm1.0$	BaBar [<u>19]</u>
	$X(3872) \to D^{*0}\bar{D}^0 + c.c.$	$(\times 10^{-4})$	
13	$B^+ \rightarrow X(3872)K^+$	$0.77 \pm 0.16 \pm 0.10$	Belle [12]
14		$1.67 \pm 0.36 \pm 0.47$	BaBar [<u>13]</u>
15	$B^0 \rightarrow X(3872)K^0$	$0.97 \pm 0.46 \pm 0.13$	Belle [<u>12</u>]
16		$2.22 \pm 1.05 \pm 0.42$	BaBar [<u>13</u>]
	$X(3872) ightarrow \omega J/\psi$	$(imes 10^{-6})$	
17	$B^+ \rightarrow X(3872)K^+$	$6\pm2\pm1$	BaBar [<u>14</u>]
18	$B^0 \rightarrow X(3872)K^0$	$6\pm3\pm1$	BaBar [<u>14</u>]
	Ratios		
19	$\frac{\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	0.79 ± 0.28	BESIII [<u>15</u>]
20	$\frac{\mathcal{B}(X(3872) \rightarrow D^{*0}\bar{D}^0 + c.c.)}{\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)}$	14.81 ± 3.80	BESIII [<u>15</u>]
21	$\frac{\mathcal{B}(X(3872) \to \omega J/\psi)}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	$1.6^{+0.4}_{-0.3}\pm 0.2$	BESIII [<u>16</u>]
22	$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c1})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	$0.88^{+0.33}_{-0.27}\pm0.10$	BESIII [<u>17</u>]
23	$\frac{\mathcal{B}(X(3872) \to \gamma \psi(3686))}{\mathcal{B}(X(3872) \to \gamma J/\psi)}$	$2.46 \pm 0.64 \pm 0.29$	LHCb [<u>20]</u>
	$B^+ \rightarrow X(3872)K^+$	$(\times 10^{-4})$	
24		$2.1\pm0.6\pm0.3$	BaBar [<u>23</u>]
25		$1.2\pm1.1\pm0.1$	Belle [22]

arXiv: 1907.09149

Parameter in	ndex Decay mode	Branching fraction
1	$X(3872) \rightarrow \pi^+\pi^-$	$J/\psi = (4.1^{+1.9}_{-1.1})\%$
2	$X(3872) ightarrow D^{*0} \overline{D}$	$^{0}+c.c.~(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) ightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) ightarrow \gamma \psi(36)$	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) o \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) ightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \rightarrow X(3872)B^+$	$(1.9 \pm 0.6) imes 10^{-4}$
8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknot}$	own $(31.9^{+18.1}_{-31.5})\%$

TABLE III: Correlation coefficients of the fit parameters listed in Table III,

Parameter	index	1	2	3	4	5	6	7	8
1		1	0.87	0.84	0.75	0.64	0.79	-0.95	-0.87
2			1	0.79	0.71	0.56	0.74	-0.90	-0.77
3				1	0.78	0.54	0.73	-0.88	-0.78
4					1	0.49	0.65	-0.79	-0.69
5						1	0.51	-0.61	-0.56
6							1	-0.82	-0.72
7								1	0.84

- Neglect systematic correlation.
- Open charm decay is dominate.
- Large room for searching new decay modes.

Summary

- Lots of progress in the study charmonium like states at BESIII.
- Many cross section lineshapes are measured.
- Y(4260)->Y(4220), seen in many final states.
- BESIII provide essential test for the existing X measurements.
- More analysis results on Zc states are in progress.

Thanks