Heavy neutrino searches at future Z-factories

Jian-Nan Ding¹

Lanzhou University School of Nuclear Science and Technology

July 31, 2019

In collaboration with Fu-Sheng Yu and Qin Qin. [arXiv:1903.02570]

¹E-mail address: dingjn13@lzu.edu.cn

2 General setup of the scenario

Phenomenological analysis

A Results and summary

Outline

1 Motivation

2 General setup of the scenario

3 Phenomenological analysis

Results and summary

Complete yet incomplete:

Complete

- No unknown particles in SM;
- Include 3 elementary interactions;
- Explain almost all experiment;

Incomplete

- Hirerachy;
- Neutrino mass;
- Dark matter, dark energy;
- Matter anti-matter asymmetry;...

three generations of matter interactions / force carriers (fermions) (bosons) Ш ш =2.2 MeV/c a 1 28 GeV/r2 ≈125.09 GeV/c² mass charge H) С q u t spin charm top gluon higgs up =4.7 MeV/c² =96 MeV/c2 SCALAR BOSONS DUARKS d b γ S down strange bottom photon = 105 66 MeV/c2 -91.19 GeV/c2 -0.511 MeV/c² =1.7768 GeV/c2 GAUGE BOSONS ACTOR BOSONS -1 Ζ е μ electron Z boson muon tau EPTONS <1.7 MeV/c2 <15.5 MeV/0 ⇒80.39 GeV/c² W Ve Vu Vτ electron tau muon W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

Observables of neutrino oscillation:

Attp://pdg.lbl.gov

$$\sum m_{\nu} < 0.170 \ eV$$
$$|\Delta m_{31}^2|^{\frac{1}{2}} \cong 0.0506 \ eV$$
$$|\Delta m_{21}^2|^{\frac{1}{2}} \cong 0.0086 \ eV$$

Introduce SU(2) singlet right-handed neutrino N_R :

A Minkowski, 77; Mohapatra and Senjanovic, 80...

► Dirac ?

$$M_D = Y_\nu \frac{\nu}{\sqrt{2}} \tag{1}$$

► Majorana ?

$$m_v \simeq M_D M_N^{-1} M_D^T \tag{2}$$

It will give us hints about leptonic CP violation. *Caputo et al.*, *17*

Andrea Romanino, Beyond the Standard Model, including Neutrinos.

Jian-Nan Ding (Lanzhou University)

Current constraints

Experiment constraints:

- ► CMS Collaboration: for $\mathcal{O}(10)$ GeV scale heavy neutrinos, $|V_{\ell N}|^2 \sim 10^{-5}$. \Leftrightarrow CMS, Sirunyan et al., 18
- ► DELPHI Collaboration: for $\mathcal{O}(10)$ GeV scale heavy neutrinos, $|V_{\ell N}|^2 \sim 10^{-5}$. \Leftrightarrow DELPHI, Abreu et al., 97
- ► Neutrinoless double β decay: for $\mathcal{O}(10)$ GeV scale heavy neutrinos, $|V_{eN}|^2 \sim 10^{-6}$. \Leftrightarrow Elliott et al., 04; Benes et al., 05; Rodejohann, 11

3 Phenomenological analysis

Jian-Nan Ding (Lanzhou University)

Scenario

Originally, the mass of Majorana neutrinos in Type-I Seesaw mechanism can reach the scale of grand unified theories.

Later, low-scale seesaw is also possible to explain the neutrino mass:

Asaka and Shaposhnikov, 05; Asaka, Blanchet and Shaposhnikov, 05

- ► one neutrino with mass at keV scale as a dark matter candidate;
- ► other two at GeV to hundred GeV scale, which will be interesting in experiment;

Generally, we can introduce *n* right-handed $SU(2)_L \times U(1)_Y$ singlet neutrinos R_j (j=1, ...*n*), and write down the Lagrangian:

$$\mathcal{L} \ni \frac{1}{2} \sum_{j} \overline{R}_{j} i \partial R_{j} - \sum_{i,j} y_{ij} \overline{L}_{i} \widetilde{H} R_{j} - \frac{1}{2} \sum_{j} \overline{R}_{j}^{c} M_{R} R_{j} + h.c. , \qquad (3)$$

where $\widetilde{H} = i\tau_2 H^*$, the lepton $SU(2)_L$ doublet $L = (\nu_{\ell L}, \ell_L)^T$ with $\ell = e, \mu, \tau$ and y_{ij} is Yukawa coupling of neutrinos.

Jian-Nan Ding (Lanzhou University)

Scenario

After spontaneous symmetry breaking, we obtain 3 + n mass eigenstates of neutrinos:

- 3 light neutrinos ν_i
- ► *n* heavy neutrinos *N_j*

Now, a flavor eigenstate is a superposition of the mass eigenstates:

$$\nu_{\ell} = \sum_{i=1}^{3} U_{\ell i} \nu_{i} + \sum_{j=4}^{3+n} V_{\ell j} N_{j}$$
(4)

and thus the neutrino-relevant weak interaction terms are given by:

$$\begin{split} \mathcal{L} & \ni -\frac{g}{2\cos\theta_{W}}Z_{\mu}\sum_{\ell}\left(\sum_{i=1}^{3}U_{\ell i}^{*}\overline{\nu}_{i}+\sum_{j=4}^{3+n}V_{\ell j}^{*}\overline{N}_{j}\right)\gamma^{\mu}P_{L}\left(\sum_{i'=1}^{3}U_{\ell i'}\nu_{i'}+\sum_{j'=4}^{3+n}V_{\ell j'}N_{j'}\right)\\ & -\frac{g}{\sqrt{2}}W_{\mu}^{+}\sum_{\ell}\left(\sum_{i=1}^{3}U_{\ell i}^{*}\overline{\nu}_{i}\gamma^{\mu}P_{L}\ell+\sum_{j=4}^{3+n}V_{\ell j}^{*}\overline{N}_{j}\gamma^{\mu}P_{L}\ell\right)+h.c. \end{split}$$

Jian-Nan Ding (Lanzhou University)

$$e^+e^- \rightarrow \nu N \rightarrow \nu \ell j j$$

Future Z factories will operate at $\sqrt{s} = M_Z$ with large integral luminosity.

Consider the narrow width approximation:

$$\sigma(e^+e^- \to \nu N \to \ell\nu jj) = \sigma(e^+e^- \to N\nu) \times Br(N \to \ell jj)$$
(5)

where:

•
$$\sigma(e^+e^- \to N\nu) \propto \sum_{i=1}^3 |(U^\dagger V)_{ij}|^2 \approx \sum_{\ell'} |V_{\ell'N}|^2$$

• $Br(N \to \ell jj) \propto |V_{\ell N}|^2 / \sum_{\ell'} |V_{\ell' N}|^2$

we obtain the relation between cross section and mixing parameters:

$$\sigma(e^+e^- \to \nu N \to \ell \nu jj) \propto |V_{\ell N}|^2 \tag{6}$$

Jian-Nan Ding (Lanzhou University)

$$e^+e^- \rightarrow \nu N \rightarrow \nu \ell j j$$

 $e^+e^- \rightarrow \nu N \rightarrow \nu \ell j j$, sum over all possible leptons and their antiparticles. For $M_N < M_Z$, $\sigma / |V_{\ell N}|^2$ is about 10³ pb at Z-pole νs 10² (1) pb at 240 GeV.

- The small peaks appearing when *N* can decay into on-shell *W* boson.
- For $\mathcal{O}(10)$ GeV scale, searching for heavy neutrinos at a Z-factory is obviously better than that at a Higgs factory.

2 General setup of the scenario

Jian-Nan Ding (Lanzhou University)

Background analysis at future Z factories

Main background comes from $e^+e^- \rightarrow jjjj$, $\tau^+\tau^-$ and $q\bar{q}$ production:

- For *jjjj*: with one jet is too soft or collinear to the beam and another jet is misidentified as an electron or muon.
- For $\tau\tau$: with one τ decaying to charged lepton while the other decaying to hadrons.

Background analysis at future Z factories

Simulation:

- ► FeynRules: generate MG simulation model;
- MadGraph: generator for signal and background;
- ► Pythia8: parton shower and hadronization;
- ► Delphes: fast jet simulation, using *eekt-exclusive* jet algorithm;

Also, we divide the mass range into 3 areas:

- small-mass: $10 < M_N < 65$ GeV;
- middle-mass: $65 < M_N < 80$ GeV;
- large-mass: $80 < M_N < 85 \text{ GeV};$

Observables:

Selection cuts

For small-mass range ($10 < M_N < 65 \text{ GeV}$):

- ► $P_T^j > 5$ GeV, $|\eta_j| < 2$, $\Delta R_{jj} > 0.1$, btag < 0.8, TauTag, BTag
- $P_T^{\ell} > 3 \text{ GeV}, |\eta_{\ell}| < 1$
- $1.0 < \Delta R_{\not \! Ej} < 5.5, 1.5 < \Delta R_{\not \! E\ell} < 5.0$

For middle-mass range ($65 < M_N < 80 \text{ GeV}$):

- ► $P_T^j > 5 \text{ GeV}, |\eta_j| < 2, \Delta R_{jj} > 0.4$, btag < 0.8, TauTag, BTag
- $P_T^{\ell} > 3 \text{ GeV}, |\eta_{\ell}| < 1$
- $1.0 < \Delta R_{\not \! Ej} < 5.5, 1.5 < \Delta R_{\not \! E\ell} < 5.0$

For large-mass range ($80 < M_N < 85 \text{ GeV}$):

- ► $P_T^i > 10 \text{ GeV}, |\eta_j| < 2, \Delta R_{jj} > 0.4, M_{jj} > 55 \text{ GeV}, \text{btag} < 0.8, \text{TauTag}, \text{BTag}$
- $P_T^{\ell} > 3 \text{ GeV}, |\eta_{\ell}| < 1$
- ► $1.5 < \Delta R_{\not \! Ej} < 5.5, 1.5 < \Delta R_{\not \! E\ell} < 5.0$

Significance

After the event selection:

- the *jjjj* events dominate the background for all the three M_N ranges;
- $b\overline{b}$ and $\tau\tau$ contributions to the background are considerable;
- the other contributions like $c\overline{c}$, $jj\ell\ell$ and $\ell\ell\ell\ell$ are negligible;

Define significance *s* as:

$$s = \frac{N_S}{\sqrt{N_B + N_S}} = \frac{N_{s0} \times (\sigma/\sigma_0)}{\sqrt{N_{B0} + N_{s0} \times (\sigma/\sigma_0)}} \sqrt{\frac{\mathcal{L}}{\mathcal{L}_0}}$$

where σ_0 and \mathcal{L}_0 mean the reference setup of a specific cross section and luminosity.

We estimate the expected upper bounds on the signal cross sections $\sigma(e^+e^- \rightarrow \nu N \rightarrow \nu \ell jj)$ at 95% confidence level (CL) with $s \approx 1.7$.

Jian-Nan Ding (Lanzhou University)

(7)

2 General setup of the scenario

3 Phenomenological analysis

Jian-Nan Ding (Lanzhou University)

Sensitivity of cross section at future Z factories

- The upper bounds on $\sigma(e^+e^- \rightarrow \nu N \rightarrow \nu e jj)$ and $\sigma(e^+e^- \rightarrow \nu N \rightarrow \nu \mu jj)$ at 95% CL given by future Z-factories have been shown;
- For the most of mass range, the upper bounds on the production cross section are around a few 10^{-4} pb to 10^{-5} pb in both the electron and muon cases;

Mixing parameters at future Z factories

|V_{ℓN}|² can reach O(10⁻⁷) with 0.1 ab⁻¹ at future Z factories;
 |V_{eN}|² is at least 1 order of magnitude lower than that of 0ν2β decay at least;
 |V_{μN}|² is at least 2 orders of magnitude lower than that given by Higgs factory;

Summary

1. We study the sensitivity of future Z factories in a low scale seesaw scenario with heavy neutrino mass among O(10) GeV.

2. Sensitivity of production cross section $\sigma(e^+e^- \rightarrow \nu N \rightarrow \nu \ell jj)$ is $\mathcal{O}(10^{-4})$ pb.

3. Mixing parameters $|V_{\ell N}|^2$ can reach $\mathcal{O}(10^{-8})$ at future Z factory with 10 ab⁻¹, which is 3 orders of magnitude lower than that of DELPHI or CMS, and 2 orders of magnitude lower than that of $0\nu 2\beta$ decay.

4. *M_N* below Z mass: Z pole run is more sensitive! *M_N* above Z mass: high energy run win!