LHCb Future Upgrades & Prospects

Jike Wang (王纪科)

Wuhan Univesity July, HFCPV 2019

Overview of the timeline

- LHC Run-I (2010-2013) & LHC Run-II (2015-2018)
- LHC Run-III, Run-IV (2021-2023, 2026-2029)
 based on LHCb Upgrade [I(a), I(b)]
- LHC Run-V (2031-)
 based on LHCb Upgrade II

Why upgrades ?

• We need more data to explore the unknown

Observable	bservable Current LHCb		σ(stat)/σ(sys)	Largest source of systematic				
EW Penguin	EW Penguins							
R_K	\hat{R}_{K} $\hat{0}.\dot{7}45 \pm 0.090 \pm 0.036$		2.5	Mass shape & trigger eff				
$R_{K^{*0}}$	$C_{K^{*0}}$ $0.69 \pm 0.11 \pm 0.05$		2.2	MC correction & residual bkgd				
$\begin{array}{c c} \mathbf{CKM \ tests} \\ \gamma, \text{ with } B_s^0 \rightarrow \\ \gamma, \text{ all modes} \\ \sin 2\beta, \text{ with } B_s^0 \rightarrow \\ \phi_s, \text{ with } B_s^0 \rightarrow \\ \phi_s, \text{ with } B_s^0 \rightarrow \\ \phi_{s}^{s\bar{s}s}, \text{ with } B_s^0 \rightarrow \\ a_{sl}^s \\ V_{ub} / V_{cb} \end{array}$	$D_s^+ K^-$ $D \rightarrow J/\psi K_s^0$ $J/\psi \phi$ $D_s^+ D_s^-$ $\rightarrow \phi \phi$	$(^{+17}_{-22})^{\circ}_{(^{+5.0}_{-5.8})^{\circ}}_{0.04}_{49 mrad}_{170 mrad}_{154 mrad}_{33 \times 10^{-4}}_{6\%}$	3 - 8 8 8 5 1.3	Δm _s , time res, tagging, det asymmetry Decay time: bias and efficiency Angular efficiency Decay time resolution Acceptance (angular and time) Track reco asymmetry				
$ \begin{array}{c} \mathbf{B}_{s}^{0}, \mathbf{B}^{0} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu} \\ \mathbf{B}_{s}^{0}, \mathbf{B}^{0} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \\ \mathbf{B}_{s}^{0} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \\ \boldsymbol{\sigma}_{B_{s}^{0} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}} \\ \boldsymbol{\sigma}_{\mu \mu} \\ \mathbf{b}_{\mu \nu} \geq \boldsymbol{c} \boldsymbol{\ell}^{-} \boldsymbol{\bar{\boldsymbol{\mu}}} \\ \end{array} \right) $	$\frac{1}{D} \overline{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$	90% $22%$	6 9	f _d /f _s Decay time acceptance				
$ \begin{array}{c c} & \underline{D} \rightarrow \underline{C} & \underline{D}_{l} & \underline{L} \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$	J v studies	0.026 0.24	1	MC sample size F(B _c →J/ψ) form factor				
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \mathbf{Charm} \\ \end{array} \\ \hline \Delta A_{CP}(KK - \phi) \\ A_{\Gamma} \ (\approx x \sin \phi) \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \mathbf{Charm} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \end{array} \\ \end{array} \end{array}$	$(\pi\pi)$	8.5×10^{-4} 2.8×10^{-4} 13×10^{-4}	2.7 2.8 2	Mass model Contribution from sec b→D*X decays Contribution from sec b→D*X decays				

What we can get ?

• Order of magnitude better precision in Upgrade II:

1

grade I precision				
Observable	Current LHCb	LHCb 2025	Belle II	Upgrade
EW Penguins				
$R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1	0.025	0.036	0.00
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1	0.031	0.032	0.00
R_{ϕ} , R_{pK} , R_{π}	_	0.08, 0.06, 0.18	_	0.02, 0.02, 0.0
CKM tests				
γ , with $B^0_s o D^+_s K^-$	$(^{+17}_{-22})^{\circ}$	4°	-	1
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$	1.5°	1.5°	0.35
$\sin 2eta$, with $B^0 o J/\psi K_{ m s}^0$	0.04	0.011	0.005	0.00
ϕ_s , with $B^0_s o J/\psi \phi$	49 mrad	14 mrad	-	4 mra
ϕ_s , with $B^0_s o D^+_s D^s$	170 mrad	35 mrad	-	9 mra
$\phi^{sar{s}s}_{s}$, with $B^{0}_{s} ightarrow \phi\phi$	154 mrad	39 mrad	-	11 mra
$a_{\rm sl}^s$	$33 imes 10^{-4}$	$10 imes 10^{-4}$	-	$3 imes 10^{-1}$
$ V_{ub} / V_{cb} $	6%	3%	1%	19
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	90%	34%	-	109
$\tau_{B^0 \to \mu^+ \mu^-}$	22%	8%	-	29
$S_{\mu\mu}$	-	-	-	0.
$b ightarrow c \ell^- ar{ u}_l$ LUV studies				
$\overline{R(D^*)}$	0.026	0.0072	0.005	0.00
$R(J/\psi)$	0.24	0.071	-	0.0
Charm				
$\Delta A_{CP}(KK - \pi\pi)$	$8.5 imes10^{-4}$	$1.7 imes10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-1}$
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 imes 10^{-4}$	$4.3 imes 10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-1}$
$x\sin\phi$ from $D^0 o K^+\pi^-$	$13 imes 10^{-4}$	$3.2 imes 10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-1}$
$x\sin\phi$ from multibody decays	-	$(K3\pi) 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)$ $1.2 imes10^{-4}$	$(K3\pi) 8.0 \times 10^{-1}$

Upgrade document milestones

Upgrade-I Detectors

- VELO: strips \Rightarrow hybird pixels, closer, finer
- UT \Rightarrow TT (Strips); IT + OT \Rightarrow SciFiber Tracker
- New electronics/trigger-system, 40MHz

Upgrade-II Detectors

Timing@ HL-LHC

- HL-LHC: pile-up is the biggest issue
- Generally, exploring timing is being considered for all detectors to suppress pile-up

VELO Upgrade I

• Upgrade I: rows of silicon microstrip modules ⇒ rows of silicon hybrid pixel modules

• Upgrade I assembly:

The RF foil

VELO needs Upgrade for high Lumi

The machine parameters for high-lumi: pileup \sim 42, Upgrade II must deliver at least the same performance as Upgrade I, with:

- 10 x higher particle multiplicity
- 10 x higher radiation damage
- 10 x higher data-out rates
- 10 x denser primary vertex environment

Very challenging!

Simulated of the Upgrade I VELO design, with no further improvements

VELO Upgrade II --- Part1

Remove the RF foil :

- gives the largest material budget
- alternative designs can be considered, such as a system of wires

- Scenario 1 includes pixels with one quarter of the area of the Phase-I pixels, and a reduced sensor thickness
- Scenario 2 also includes removal of the RF foil separating the VELO and beam vacuum

VELO Upgrade II --- Part2

Moving towards 4D tracker concept with addition of timing:

Figure 4.4: Fraction of *b*-hadron decays mismatched to the wrong PV as a function of the time resolution per hit at a luminosity of 2×10^{34} cm⁻²s⁻¹. The horizontal dashed line shows the approximate performance of the Phase-I Upgrade VELO at 2×10^{33} cm⁻²s⁻¹. The hit information used as input to the study is obtained from a sample of simulated events assuming the layout of the Phase-I Upgrade VELO.

Magnet Stations

- Improve tracking for soft particles which cannot cross the magnet
- Scintillator-based tracker on the internal side walls of the magnet

Magnet Stations

Physics cases:

- Many body final states in beauty/charm decays commonly contain one or more low-momentum
- strange mesons/baryons would benefit due to the low momentum of the products originating from the decays of these lower mass particles.
- improve for decays where a final-state particle is produced at/near threshold

Mighty Tracker

Primary tracking device that provides momentum resolution for the tracks, in conjunction with the VELO and UT.

- Two stage approach: Inner tracker in LS3, middle tracker in LS4
 HVCMOS (borrowed from ATLAS, mu3e)
- The Outer region: vertical scintillating fibres

TORCH

Time Of interally Reflected CHerenkov light: measure the arrival time of charged particles with a precision of a few

 New multi-channel photontube technology, aiming to provide ~15 ps timing resolution

TORCH

Physics cases:

- suppress the rate of ghost tracks (compare TORCH timestamp with the timestamp from the VELO)
- sensitive to the direction of the incident particles, suppress T-track ghosts arising from the incorrect association of hits in the DT

- 2/3 of *K*s0 mesons (a higher proportion of Λ), decay after the VELO and so could only be time-stamped by the TORCH. Allow these long-lived particles to be assigned to the correct interaction
- Time-of-flight PID detector for p < 10 GeV/c

ECAL

ECAL requirements for Upgrade II:

- Innermost modules must sustain doses up to • ~1MGy
- Better spatial resolution in inner, middle region; • Keep good energy resolution
- Add timing info to mitigate pile-up effects •

(a)

Single plane resolution 20 ps

Single plane resolution 50 ps No timing information

40

Number of incorrect vertices included in window

60

20

Fraction of events [%]

30 25

20

15

Figure 4.13: Impact of timing information on assigning ECAL clusters to PVs: (a) number of incorrect vertices passing selection; (b) efficiency of selection vs. number of incorrect vertices.

Efficiency [%]

100

80

20

0 0

|Jike Wang(王纪科),武汉大学|July, HFCPV-2019| Page 18

10

Mean number of incorrect vertices in window

Muon

- Additional iron shielding instead of HCAL
 - HCAL was for hardware trigger
- New chamber technology with their own customised frontend electronics in the hottest region

Summary

- LHCb currently ongoing a major upgrade for Run-3 and Run-4.
- Preparations underway for a new era of discoveries taking maximum advantage of the High-Luminosity LHC
 - timing information may be key to coping with pile-up