Charmed hadron hadronic decays at BESII

王滨龙 (BESIII 合作组) 中国科学院大学

第十七届全国重味物理和CP破坏研讨会(HFCPV-2019)

第十七届全国重味物理和CP破坏研讨会

Recent charmed hadronic decsays in BESIII

- DataSet and Analysis method
- 1. Two body decays
 - 1. $D_s^+ \rightarrow K_S^0 K^+$ and $K_L^0 K^+$ based on 4178 data
 - 2. $D^+ \rightarrow K_{S/L}{}^0K^+(\pi^0)$ based on the 3773 data
 - 3. $D_s^+ \rightarrow \omega \pi + \text{ and } D_s^+ \rightarrow \omega K^+$ based on the 4178 data
 - 4. $D_s^+ \rightarrow pnbar$ based on the 4178 data
- 2. Three body decays
 - 1. $D_s^+ \rightarrow \pi^+ \pi^0 \eta$ based on the 4178 data
 - 2. $D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$ based on the 3773 data
 - 3. $D^+{\rightarrow}K_s\pi^+\pi^+\pi^-$ based on the 3773 data
- 3. $\Lambda_{\text{c}}{}^{\text{+}}$ decays
 - 1. $\Lambda_{\text{c}}{}^{\text{+}}{\rightarrow}\Sigma^{\text{+}}(\eta/\eta')$ based on the 4600 data
 - 2. $\Lambda_{c}{}^{+}{\rightarrow}\Lambda X$ at 4600 data
- Summary

Typical analysis method to measure BF

- In our sample, $\mathsf{D}_{(s)}$ and Λ_{c} are produced in pair:

- Reconstruct one of the D(s): ST
- There must be the other D(s): DT
- ✓ allowing measurements of absolute BFs without the knowledge of data size (I.e., BF(D_s→KKπ) = [B(D_s→tag)× BF(D_s→KKπ)]/BF(D_s→tag) = [Double Tag yields]/[Single Tag yields].

✓ Systematics associated with ST also canceled in this ratio.
2019-7-31
第十七届全国重味物理和CP破坏研讨会

1. two body decay

$D_{\rm s}{}^+{\rightarrow}K_S{}^0K^+$ and $K_L{}^0K^+$ based on 4178 data

PRD 99, 112005 (2019)

- CF $(D \rightarrow \overline{K^0} \pi)$ and the DCS transition $(D \rightarrow K^0 \pi)$ can interfere, and result in a $K_s^0-K_L^0$ asymmetry. (PLB 349, 363 (1986))
- \checkmark So can the CF and DCS amplitudes in Ds decays: $D_s{}^+{\rightarrow}K_S{}^0K^+$ and $K_L{}^0K^+$
- Such interference effect could also lead to CPV:
- ✓ Acp~10⁻³, predicted by F. S. Yu et, al (PRL 119, 181802 (2017))
- Provide information to explore D⁰- D⁰ bar mixing, CPV and SU(3) breaking in charm sector. (PRD 55 196 (1997) & PLB 750, 338 (2015))
 TABLE I: Predictions for K⁰_S-K⁰_L asymmetries in charmed-meson decays from different phenomenological models and the CLEO measurements.

·	DIAG [7]	DIAG ^[8]	QCDF [9]	$SU(3)_{FB}$ [10]	FAT [11]	CLEO [12]
$R(D^0 \to K^0_{S,L} \pi^0)(\%)$	10.7	10.7	10.6	9^{+4}_{-2}	11.3 ± 0.1	$10.8 \pm 2.5_{\rm stat.} \pm 2.4_{\rm syst.}$
$R(D^+ \to K^0_{S,L}\pi^+)(\%)$	-0.5 ± 1.3	-1.9 ± 1.6	-1.0 ± 2.6	_	2.5 ± 0.8	$2.2 \pm 1.6_{\rm stat.} \pm 1.8_{\rm syst.}$
$R(D_s^+ \to K_{S,L}^{0'} K^+)(\%)$	-0.22 ± 0.87	-0.8 ± 0.7	-0.8 ± 0.7	11^{+4}_{-14}	1.2 ± 0.6	-

$D_{\rm s}{}^+{\rightarrow}K_S{}^0K^+$ and $K_L{}^0K^+$

1. Frist use 13 ST Ds- ST tag mode

PRD 99, 112005 (2019)

- 2. For $K_S^0K^+$, reconstructed K_S^0 and K^+ , 2D Fit to M(ST-tag) and M($K_S^0K^+$)
- 3. For $K_L^0K^+$, reconstuct gamma and K, Fit MissingMass².

$D^+ \rightarrow K_{S/L}^0 K^+(\pi^0)$ based on the 3773 data

PRD 99, 032002 (2019)

- Also look for similar final states, but in D⁺ decays
- Direct CPV in SCS arise from interference between tree-level and penguin.
- SCS D⁺ meson hadronic decays are predicted to exhibit CPV of 10⁻³ (PLB 298,413 (1993))
- An CPV >O(10⁻³) in SCS indicates new physics.
- Two-body decays can be calculated with in SU(3) flavor symmetry (PRD 86, 036012 (2012))
- Also added an additional π⁰ (For this 3-body decay, MC was tuned based on D→KKp) by CLEO (PRD 78, 072003 (2008))

$\mathbf{D}^+ \rightarrow \mathbf{K}_{S/L}{}^0\mathbf{K}^+(\pi^0)$

- 1. 6 ST D- ST tag mode
- 2. For $K_S^0K^+$, reconstructed K_S^0 and K^+ ,
- 3. For $K_L^0K^+$, use the K_L^0 direction in the kinematic fit.
- 4. 2D fit to M_{BC}^{sig} v.s. M_{BC}^{tag} .

Events / (1.2 MeV/c²) Events / (1.2 MeV/c²) Events / (1.2 MeV/c²) D⁺→K⁰_SK⁺ Events / (1.2 MeV/c² 100 50 20 1.86 1.88 1.84 1.86 1.88 1.86 1.88 1.84 1.84 1.84 1.86 1.88 M_{BC}^{sig} (GeV/c²) M_{BC}^{tag} (GeV/c²) M_{BC}^{sig} (GeV/c²) M_{BC}^{tag} (GeV/c²) Events / (1.2 MeV/c²) $D^+ \rightarrow K^0_I K^+ \pi^0$ Events / (1.2 MeV/c² 50 consistent 1.84 1.88 1.84 1.86 1.88 with 0 $M_{\rm BC}^{\rm sig}$ (GeV/c²) $M_{\rm BC}^{\rm tag}$ (GeV/c²) Signal mode $\overline{\mathcal{B}}$ (×10⁻³) $\mathcal{B}(D^+)$ (×10⁻³) $\mathcal{B}(D^{-})$ $(\times 10^{-3})$ \mathcal{B} (PDG) (×10⁻³) \mathcal{A}_{CP} (%) $K^0_S K^{\pm}$ 2.95 ± 0.15 $2.96 \pm 0.11 \pm 0.08$ $3.07 \pm 0.12 \pm 0.08$ $3.02 \pm 0.09 \pm 0.08$ $-1.8 \pm 2.7 \pm 1.6$ $K^0_S K^{\pm} \pi^0$ $5.14 \pm 0.27 \pm 0.24$ $5.00 \pm 0.26 \pm 0.22$ $5.07 \pm 0.19 \pm 0.23$ $1.4 \pm 3.7 \pm 2.4$ $K_L^0 K^{\pm}$ $-4.2 \pm 3.2 \pm 1.2$ $3.07 \pm 0.14 \pm 0.10$ $3.34 \pm 0.15 \pm 0.11$ $3.21 \pm 0.11 \pm 0.11$ 1st measurent $K^0_T K^{\pm} \pi^0$ $5.21 \pm 0.30 \pm 0.22$ $5.27 \pm 0.30 \pm 0.22$ $5.24 \pm 0.22 \pm 0.22$ $-0.6 \pm 4.1 \pm 1.7$

PRD 99, 032002 (2019)

$D^+ \rightarrow K_{S/L}^0 K^+(\pi^0)$ Acp in Daliz bins

Reg	ion $\mathcal{B}(D^+)$ (×10 ⁻³)	${\cal B}(D^-) \; (imes 10^{-3})$	\mathcal{A}_{CP} (%)
	$K^0_S K^+ \pi^0$	$K^0_S K^- \pi^0$	
1	$2.86 \pm 0.22 \pm 0.10$	$2.75\pm0.21\pm0.09$	$2.0 \pm 5.4 \pm 2.4$
2	$0.48 \pm 0.08 \pm 0.02$	$0.58\pm0.09\pm0.02$	$-9.4 \pm 11.3 \pm 2.7$
3	$1.85 \pm 0.16 \pm 0.05$	$1.65\pm0.15\pm0.04$	$-5.7 \pm 6.3 \pm 1.8$
	$K^0_L K^+ \pi^0$	$K^0_L K^- \pi^0$	
1	$2.89 \pm 0.24 \pm 0.08$	$2.83 \pm 0.23 \pm 0.06$	$1.0 \pm 5.8 \pm 1.7$
2	$0.51 \pm 0.08 \pm 0.01$	$0.50\pm0.08\pm0.01$	$1.0 \pm 11.2 \pm 1.4$
3	$1.90\pm0.17\pm0.03$	$2.12 \pm 0.18 \pm 0.03$	$-5.5 \pm 6.1 \pm 1.1$

Determine the direct CP asymetries for SCS decays, also in Daliz plot regions.

No evidence for direct CPV found.

BF of two body decays in agreement with SU(3) calculation

W-Annihilation D_s^+ \rightarrow \omega \pi + and Evidce of D_s^+ \rightarrow \omega K^+ based on the 4178 data PRD 99, 091101(R) (2019)

- In charm sector, Direct CPV can arise from SCS involving W-annihilation process.
- W-annihilation amplitude dominated by nonfactorizable long-distance & final-state interaction. The calculation is unreliable.
- Experimental BF measurement of W-annihilation is used as an input in theoretical calculations.
- We analyse the W-annihilation-only $D^+ \rightarrow \omega \pi^+$

٠

ωπ+: CF: Has seen by CLEO (PRD80, 051102): BF= (2.1±0.9)×10⁻³ ωK⁺: SCS: CLEO (PRD80, 051102) UL = 2.4×10⁻³ @90% C.L

- Q. Qin et al. (PRD89, 054006) predicts (factorization):
 - BF (ωK⁺)~0.6×10⁻³ (with Acp~-0.6ωK⁺10⁻³),
 - It could become ~0.07×10⁻⁴ (with Acp~2.3×10⁻³) if ω-ρ mix is considered 2019-7-31 第十七届全国重味物理和CP破坏研讨会 10

$\mathbf{D}_{s}^{+} \rightarrow \omega \pi^{+}$ and $\mathbf{D}_{s}^{+} \rightarrow \omega K^{+}$

1. ST: 2 higest purity decay modes 2. DT: reconstruct $\omega \pi^+/K^+$. 4. 2D fit to $M_{\pi+\pi-\pi0}$ v.s. M_{sig} . $M_{\rm sig} ({\rm GeV}/c^2)$ M_{sig} (GeV/c²) 1.9 0.6 1.9.6 $M_{\pi^{+}\pi^{-}\pi^{0}} ({\rm GeV}/c^{2})$ $M_{\pi^{*}\pi^{*}\pi^{0}} ({\rm GeV}/c^{2})$ Events/10 MeV/c² (b) (e) Events/10 MeV/c 20 0.7 0.8 M_{π⁺π⁻π⁰} (GeV/c²) 0.7 0.8 M_{π⁺ππ⁰} (GeV/c²) 0.9 0.6 0.9 0.6 Events/2 MeV/c² (c) Events/2 MeV/c2 (f) 15 10 1.95 M_{sig} (GeV/c²) 1.9 1.9 1.95 M_{sig} (GeV/c²) 2019-7-31 围重味物理和CP破坏研讨会

PRD 99, 091101(R) (2019)

 $BF(D_s^+ \rightarrow \omega \pi^+) =$

(1.77±0.32±0.13)10×-3

Consistent with Cleo, more precise.

•
$$BF(D_s^+ \rightarrow \omega K^+)=$$

 $(0.87\pm0.24\pm0.08)\times10^{-3}$

1st evidence

According to Qin et al., this implies Acp ~ 0.6×10^{-3} and negligible effect from $\omega - \rho$ mixing

$D_{\rm s}{}^+{\rightarrow} p\overline{n}$ based on the 4178 data

PRD 99, 031101(R) (2019)

- The only kinematically allowed hadronic decay, involving baryons.
- Short-distance contribution is expected to be small BF~10⁻⁶
- due to the chiral suppression by a factor of $(m_{\pi}/m_{Ds})^4$

• But long-distance can enhance BF to ~10-3 (C.H. Chen, et al. PLB663, 326)

 First evidence was reported by CLEO with BF = (1.30±0.36^{+0.12}-0.16) × 10⁻³ (PRL100, 181803)

2019-7-31

${D_{\rm s}}^{+}{\rightarrow} p\overline{n}$

- 1. 11 ST Ds- ST tag mode
- 2. DT, reconstruct a gamma and proton..
- 4. fit the miss mass

- BESIII confirms it is indeed large: BF = $(1.21\pm0.10\pm0.05)\times10^{-3}$
- The short distance dynamics is not the driven mechanism.
- The hadronization process, driven by nonperturbative dynamics determines the underlying physics.

2019-7-31

PRD 99, 031101(R) (2019)

2. three body decay

$\boldsymbol{D_{s}^{+}}{\rightarrow}\pi^{+}\pi^{0}\eta$ based on the 4178 data

- Measurements of decays involving a Wannihilation is the best methld.
- Search for pure WA $D_s^+ \rightarrow a_0(980)^{+(0)}\pi^{0(+)}$

Amplitude	$\phi_n \ (rad)$	FF_n
$D_s^+ \to \rho^+ \eta$	0.0 (fixed)	$0.783 \pm 0.050 \pm 0.021$
$D_s^+ \to (\pi^+ \pi^0)_V \eta$	$0.612 \pm 0.172 \pm 0.342$	$0.054 \pm 0.021 \pm 0.025$
$D_s^+ \to a_0(980)\pi$	$2.794 \pm 0.087 \pm 0.044$	$0.232 \pm 0.023 \pm 0.033$

• Improved precision:

BF $(D_s^+ \rightarrow \pi^+ \pi^0 \eta) = (9.50 \pm 0.15 \pm 0.41)\%$

• First measurement (16.2 σ stat. significance)! BF(D_s⁺ \rightarrow a₀(980)⁺⁽⁰⁾ $\pi^{0(+)}$, a₀(980)⁺⁽⁰⁾ $\rightarrow \pi^{+(0)}\eta$) = (1.46±0.15±0.23)% Very large BF, compared to other W-annihilation dec (e.g., D_s⁺ \rightarrow pnbar/ $\omega\pi$ are all at 10⁻³ level).

Submitted to PRL arXiv: 1903.04118

- Amplitude analysis based on DT-ed 1239 events (purity: 97.7%).
- 7 ST modes

$D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$ based on the 3773 data

- Amplitude analysis based on DT-ed 5950 events (purity: 98.9%)
- One of the largest BF in the neutral D decays. (contribute ~10% ST tag)
- First amplitude analysis on this decay mode

improved precision: $BF(D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0) = (8.86 \pm 0.13 \pm 0.19)\%$ $Ied by D^0 \rightarrow K^- a(1260)^+$ 2019-7-31 第十七届全国重味物理和CP破坏研讨会

PRD 99, 092008 (2019)

Amplitude mode	I	II	III	IV	Total
$D \rightarrow SS$			111.01		
$D \to (K^- \pi^+)_S (\pi^0 \pi^0)_S$	1.518	1.258	0.072	0.235	1.987
$D \to (K^- \pi^0)_S (\pi^+ \pi^0)_S$	1.524	0.835	0.078	0.004	1.740
$D \rightarrow AP, A \rightarrow VP$					
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	1.293	0.436	0.030	0.363	1.412
$D \to K^{-}a_1(1260)^+, \rho^+\pi^0[D]$	0.938	0.368	0.024	0.284	1.046
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0[S]$	1.643	1.175	0.160	0.182	2.035
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	1.562	0.567	0.034	0.036	1.662
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	0.989	0.541	0.035	0.068	1.201
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	0.713	0.221	0.098	0.172	0.772
$D \to (K^{*-}\pi^0)_A \pi^+, K^{*-}\pi^0[S]$	1.253	1.254	0.076	0.237	1.790
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	1.145	0.524	0.022	0.162	1.278
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	0.865	1.468	0.052	0.106	1.708
$D \to (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	1.249	0.812	0.084	0.186	1.504
$D \to AP, A \to SP$					
$D \to ((K^- \pi^+)_S \pi^0)_A \pi^0$	1.377	0.372	0.102	0.164	1.439
$D \rightarrow VS$					
$D \rightarrow (K^- \pi^0)_S \rho^+$	1.308	0.252	0.070	0.476	1.416
$D \rightarrow K^{*-}(\pi^+\pi^0)_S$	0.381	0.549	0.023	0.166	0.689
$D \rightarrow K^{*0}(\pi^0 \pi^0)_S$	0.880	0.417	0.078	0.232	1.005
$D \to VP, V \to VP$					
$D \rightarrow (K^{*-}\pi^+)_V \pi^0$	0.688	0.752	0.033	0.273	1.056
$D \rightarrow VV$					
$D \to K^{*-} \rho^+[S]$	0.980	1.354	0.059	0.371	1.713
$D \to K^{*-} \rho^+[P]$	0.425	0.506	0.031	0.348	0.747
$D \to K^{*-} \rho^+[D]$	1.365	0.598	0.049	0.398	1.543
$D \to (K^- \pi^0)_V \rho^+ [P]$	0.695	1.223	0.027	0.140	1.414
$D \rightarrow (K^- \pi^0)_V \rho^+ [D]$	1.335	0.848	0.237	0.401	1.649
$D \rightarrow K^{*-}(\pi^+\pi^0)_V[D]$	0.751	0.894	0.049	0.074	1.171
$D \to (K^- \pi^0)_V (\pi^+ \pi^0)_V [S]$	0.818	0.443	0.046	0.211	0.955
$D \rightarrow TS$					
$D \rightarrow (K^- \pi^+)_S (\pi^0 \pi^0)_T$	1.171	0.936	0.084	0.273	1.528
$D \to (K^- \pi^0)_S (\pi^+ \pi^0)_T$	0.803	0.188	0.068	0.018	0.828
			-1	6	

$D^+ \rightarrow K_s \pi^+ \pi^+ \pi^-$ based on the 3773 data

Final-state interactions can cause significant changes in decay rates and shifts in the phases of decay amplitudes.

Submitted to PRD arXiv: 1901.05936

- Improved precisions.
- Consistent with the previous measurements.
- Again, led by $D^+ \rightarrow K_s a_1(1260)^+$

(also consistent with our measurement in $D^0 \rightarrow K^-\pi^+\pi^-$: PRD 95, 072010 (2017)).

But $D^+ \rightarrow K_1(1440)^0 \pi^+$ is found to be larger, unlike what we saw in the two D^0 cases

<u>**1.** Λ^+ </u><u>decay</u>

$\Lambda_{\mathbf{c}}{}^{\textbf{+}}{\rightarrow}\Sigma^{\textbf{+}}(\eta/\eta')$ based on the 4600 data

CPC 43, 083003 (2019)

CF decays, proceed through nonfactorizable internal W-mission/exchange Large range of predicted BFs

With the known BF($\Lambda_c^+ \rightarrow \Sigma^+ \pi^0 / \omega$) from BESIII (PRL 116, 052001 (2016))

Decay mode	Körner [5]	Sharma [3]	Zenczykowski [4]	Ivanov [6]	CLEO [12]	This work
$\Lambda_c^+ \to \Sigma^+ \eta$	0.16	0.57	0.94	0.11	0.70 ± 0.23	$0.41{\pm}0.20~({<}0.68)$
$\Lambda_c^+ \to \Sigma^+ \eta'$	1.28	0.10	0.12	0.12	-	$1.34 \pm 0.57 \ (< 1.9)$
2019-7-	31	第	十七届全国重味物理和(CP破坏研讨会		19

$\Lambda_{\mathbf{c}}{}^{\textbf{+}}{\rightarrow}\Lambda\textbf{X}$ at 4600 data

PRL 121, 062003 (2018)

- Important to calibrate the amplitude of the CF transition.
- essential input in calculation of lifetimes of charmed baryons.
- ST tag mode: $pK\pi$ and pKs
- Extract yiels from 2D distribution in $M_{BC}{}^{ST}$ and $M_{p\pi-}$

2.295 2.29 2.285 M_{BC} (GeV/c²) 2.28 2.275 2.27 E 2.265 2.26 2.255 2.25 1.11 1.115 1.12 1.125 1.13 1.135 1.1 1.105 M_{pπ} (GeV/c²)

2.3

$$N^{\rm sig} = N^{\rm S} - \frac{N^{\rm A} + N^{\rm B}}{2} - f \cdot (N^{\rm D} - \frac{N^{\rm C} + N^{\rm E}}{2}),$$

 $BF(\Lambda_{c}^{+} \rightarrow \Lambda X) = (38.2 + 2.8 - 2.2 \pm 2.8)\%$

 $\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- - \hat{\pi} + X)} = (2.1^{+7.0} \pm 1.4)\%$

20

В

More Λ_c^+/XYZ data

- BESIII will take more data >4600 in the future
- BEPCII is ready for the energy up to 4.7GeV
- We have chance to improve the precisions of $\Lambda_{c}{}^{+}$ decay rates to the level of charmed mesons!
 - Hadronic decays
 - To explore as-yet-unmeasured channels and understand full picture
 - More semi-leptonic decays $\Sigma \pi I^+ \nu$, $pK^-I^+ \nu$, $p\pi^-I^+ \nu$, ...
 - CPV
 - Rare decays: LFV, BNV, FCNC,...

- Our result include new measurements, have confirmed and improved the precisions over the previous results.
- More measurements in D(s) hadronic decays are coming.
- Planning to take more data at/> Ecm~4.6GeV.
- Allow us to improve further precisions and rare/forbidden searches in Lc decays.

Thanks