Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

$K^- \rightarrow \pi^+ \mu^- \mu^-$ from the perspective of effective field theory

Xiao-dong Ma School of Physics, Nankai University, Tianjin

Hohhot, July 30, 2019

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

Outline

1) Why
$$K^- \rightarrow \pi^+ \mu^- \mu^-$$
?

3) Back to
$$K^- o \pi^+ \mu^- \mu^-$$

4 Conclusion

Why we explore lepton number violation(LNV)?

- Neutrino oscillation ⇒ non-vanishing neutrino mass ← Majorana neutrino mass;
- The nature of dark matter;
- Anomalies/bumps from terrestrial experiments: g_μ 2, R_K(R^{*}_K), · · · (?!)
- LNV processes are definite signal for new physics(NP);

...

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

LNV processes

- Neutrinoless double beta decay: $X \rightarrow X' + 2p + 2e^-$;
- Nuclear muon-positron/anti-muon conversion: $\mu^- X \rightarrow e^+(\mu^+)X'$;
- Trimuon production from neutrino-proton collision: $\nu p \rightarrow \mu^{-} \mu^{+} \mu^{+}$;
- Production of Majorana neutrino from electron-proton collison: $e^+p \rightarrow \overline{\nu} l_1^+ l_2^+ X$ from HERA;
- The tau lepton decaying: $\tau^- \rightarrow M_1^- M_2^- \mu^+$;
- Kaon neutrinoless double-muon decay: $K^- \rightarrow \pi^+ \mu^- \mu^- \checkmark$;
- Also for the lepton number violating decays from other mesons like D and B [Belle, LHCb, ...].

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

Why $K^- \rightarrow \pi^+ \mu^- \mu^-$?

- The negative result from $0\nu\beta\beta$;
- Easily formulated from theory;
- The unprecedented precision for the decay: Br $(K^- \rightarrow \pi^+ \mu^- \mu^-) < 4.2 \times 10^{-11}$ [1905.07770];
- It can provide complementary constraints on NP parameters together with other LNV processes, like 0νββ;

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

How to study $K^- \rightarrow \pi^+ \mu^- \mu^-$?

EFT: NP \Rightarrow SMEFT \Rightarrow LEFT $\Rightarrow \chi$ PT $\Rightarrow K^- \rightarrow \pi^+ \mu^- \mu^-$

(a) mass mechanism; (b) long-range interaction; (c) short-range interaction.

Here we assume the process is **dominated by (c)**, i.e., the local dim-9 operators in LEFT, and only focus on it!

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

A general picture of EFT calculation for $K^- \rightarrow \pi^+ \mu^- \mu^-$

Energ	Beyond SM Models			
$\sim \Lambda_{ m PN}$	Inte	grate out heavy NP p	articles	Matching
	SMEFT	dim-5, dim-6, B	dir	n-7
$\sim 100 \text{GeV}$	Inte	grate out H, Z, W, t	K	Matching
	LEFT	dim-3, dim-4,	$(\overline{u}\Gamma_{1}d)(\overline{u}\Gamma$	$(\overline{l^C}\Gamma_3 l)$ d
$\sim 1 { m GeV}$	Chi	ral symmetry: SU(3)	$L imes SU(3)_R$	Matching
100 10	χ PT	$egin{aligned} \mathcal{O}(p^2), \ \mathcal{O}(p^4), \cdots \ \mathcal{O}(p^3), \ \mathcal{O}(p^5), \cdots \end{aligned}$	$K^- \rightarrow$	$\pi^+ l^- l^-$ EX
$\sim 100 \mathrm{MeV}$				

8/27

1) Why $K^- o \pi^+ \mu^- \mu^-$?

Why $K^- \rightarrow \pi^+ \mu^- \mu^-$?	Backgrounds of different EFTs	Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$	Conclusion
SMEFT 1			

- Assumption: NP beyond SM exist, with $\Lambda_{NP} \gg v$;
- Ingredients: SM fields + SM gauge symmetry;
- SMEFT= all possible local, SM gauge invariant operators built from SM fields ordered by the inverse power of Λ_{NP}, i.e.,

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}^{D-4}} \sum_{D \ge 5} C_i^D \mathcal{O}_i^D,$$

Wilson coefficients C_i^D encode the contribution from unknown NP.

- Merit: play physics in a model-independent way;
- Warning: not all operators need to be considered ← the equivalence theorem ⇒ focus on a minimal basis in each dimension! [1901.10302]

Why $K^- \rightarrow \pi^+ \mu^- \mu^-$?	Backgrounds of different EFTs	Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$	Conclusion
SMEFT 2			

• dim-5: $1(\not L \cap B)$ [Weinberg 79] \rightarrow dim- $D \in$ odd [Liao 10]

$$\mathcal{O}_{LH}^{D} = \left[(L^{\mathsf{T}} \epsilon H) C (L^{\mathsf{T}} \epsilon H)^{\mathsf{T}} \right] (H^{\dagger} H)^{(D-5)/2}$$

- dim-6: $59(L \cap B) + 4(L \cap B)$ [Buchmuller *et al* 86; Grzadkowski *et al* 10]
- dim-7: $12(\not L \cap B) + 6(\not L \cap \not B)$ [Lehman 14; 1607.07309]
- dim-8, 9, · · · [Lehman et al 15; Henning et al 15, 17[1706.08520]]
- $D \in \text{even}(\text{odd})$ if |B L|/2 is even(odd) for SMEFT;
- D = 6: |B L| = 0 vs D = 7: |B L| = 2;
- $D \in \text{odd}$: *L* is violated;
- Also the vSMEFT at dim-6 and dim-7 [1612.04527]

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

SMEFT 3: dim-7 operators [Lehman 14; 1607.07309]

	$\psi^2 H^4$ + h.c.		$\psi^2 H^3 D$ + h.c.
\mathcal{O}_{LH}	$\epsilon_{ij}\epsilon_{mn}(L^iCL^m)H^jH^n(H^{\dagger}H)$	\mathcal{O}_{LeHD}	$\epsilon_{ij}\epsilon_{mn}(L^iC\gamma_\mu e)H^jH^miD^\mu H^n$
	$\psi^2 H^2 D^2 + h.c.$		$\psi^2 H^2 X + h.c.$
O_{LHD1}	$\epsilon_{ij}\epsilon_{mn}(L^iCD^{\mu}L^j)H^m(D_{\mu}H^n)$	\mathcal{O}_{LHB}	$g_1 \epsilon_{ij} \epsilon_{mn} (L^i C \sigma_{\mu\nu} L^m) H^j H^n B^{\mu\nu}$
\mathcal{O}_{LHD2}	$\epsilon_{im}\epsilon_{jn}(L^iCD^{\mu}L^j)H^m(D_{\mu}H^n)$	\mathcal{O}_{LHW}	$g_2 \epsilon_{ij} (\epsilon \tau^l)_{mn} (L^i C \sigma_{\mu\nu} L^m) H^j H^n W^{l\mu\nu}$
	$\psi^4 D$ + h.c.		$\psi^4 H$ + h.c.
$O_{\overline{d}uLLD}$	$\epsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^{i}CiD^{\mu}L^{j})$	$\mathcal{O}_{\bar{e}LLLH}$	$\epsilon_{ij}\epsilon_{mn}(\bar{e}L^{i})(L^{j}CL^{m})H^{n}$
		$O_{\overline{d}LQLH1}$	$\epsilon_{ij}\epsilon_{mn}(\bar{d}L^i)(Q^jCL^m)H^n$
		$\mathcal{O}_{\overline{d}LQLH2}$	$\epsilon_{im}\epsilon_{jn}(\bar{d}L^i)(Q^jCL^m)H^n$
		0 _{dLueH}	$\epsilon_{ij}(\bar{d}L^i)(uCe)H^j$
		OQULLH	$\epsilon_{ij}(\bar{Q}u)(LCL^i)H^j$
$\mathcal{O}_{\bar{L}OddD}$	$(\overline{L}\gamma_{\mu}Q)(dCiD^{\mu}d)$	O _{I dud} Ĥ	(Ēd)(uCd)Ĥ
<i>O</i> _{ēdddD}	$(\bar{e}\gamma_{\mu}d)(dCiD^{\mu}d)$	$\mathcal{O}_{\bar{L}dddH}$	(Ēd)(dCd)H
		<i>O</i> _{ēQddĤ}	$\epsilon_{ij}(\bar{e}Q^i)(dCd)\tilde{H}^j$
		$\mathcal{O}_{ar{L}dQQ ilde{H}}$	$\epsilon_{ij}(\bar{L}d)(QCQ^i)\tilde{H}^j$

Operators contributing to ${\cal K}^- \to \pi^+ \mu^- \mu^-$

- Mass mechanism: $\mathcal{O}_{LH}^{5\dagger}, \mathcal{O}_{LH}^{\dagger}$
- Long-range interaction: $\mathcal{O}_{LeHD}^{\dagger}$, $\mathcal{O}_{dLQLH1}^{\dagger}$, $\mathcal{O}_{dLQLH2}^{\dagger}$, $\mathcal{O}_{dLueH}^{\dagger}$, $\mathcal{O}_{oullH}^{\dagger}$;
- Short-range interaction: $\mathcal{O}_{LHD1}^{\dagger}$, $\mathcal{O}_{LHW}^{\dagger}$, $\mathcal{O}_{\overline{d}uLLD}^{\dagger}$ (Our starting point!)

Why K^-			

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

LEFT

- Worked scale: $m_p < \Lambda < m_W$;
- Fields: *u*, *d*, *s*, *c*, *b*, *e*, ν_e , μ , ν_μ , τ , ν_τ , γ , *g*;
- Symmetry: $U(1)_{\text{EM}} \times SU(3)_C$;
- LEFT=all possible local, U(1)_{EM} × SU(3)_C invariant operators constructed from the above fields ordered by the inverse power of vev v, i.e.,

$$\mathcal{L}_{\mathsf{LEFT}} = \mathcal{L}_{\leq 4} + rac{1}{v^{D-4}} \sum_{D \geq 5} L^D_i \mathcal{Q}^D_i,$$

- dim-5: $70(\Delta L = \Delta B = 0)$ & dim-6: $3631(\Delta L = \Delta B = 0)$ [Manohar *et al* 17, 18];
- dim-7: $3168(\Delta L = \Delta B = 0) + 750(\Delta L = \pm 2, \Delta B = 0) + 588(\Delta L = -\Delta B = \pm 1) + 612(\Delta L = \Delta B = \pm 1)$; (In preparation)
- dim-9: 5832 six-fermion, $(\Delta L, \Delta B) = (2, 0)$ operators.

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

Basis of dim-9 $(\Delta L, \Delta B) = (2, 0)$ operators LEFT

Operator	Specific form	Operator	Specific form
Oprst	$(\overline{u_L^{\rho}}\gamma^{\mu}d_L^r)[\overline{u_L^s}\gamma_{\mu}d_L^t](j^{\alpha\beta}/j_5^{\alpha\beta})$	O _{prst} RRR, S/P	$(\overline{u_{R}^{\rho}}\gamma^{\mu}d_{R}^{r})[\overline{u_{R}^{s}}\gamma_{\mu}d_{R}^{t}](j^{\alpha\beta}/j_{5}^{\alpha\beta})$
O ^{LLLL, T}	$(\overline{u_L^p}\gamma^{\mu}d_L^r)[\overline{u_L^s}\gamma^{\nu}d_L^t](j_{\mu\nu}^{\alpha\beta})$	$\mathcal{O}_{prst}^{RRRR, T}$	$(\overline{u_{R}^{p}}\gamma^{\mu}d_{R}^{r})[\overline{u_{R}^{s}}\gamma^{\nu}d_{R}^{t}](j_{\mu\nu}^{\alpha\beta})$
$\tilde{O}_{prst}^{LLLL, T}$	$(\overline{u_L^p}\gamma^{\mu}d_L^r][\overline{u_L^s}\gamma^{\nu}d_L^t)(j_{\mu\nu}^{\alpha\beta})$	$\tilde{O}_{prst}^{RRRR, T}$	$(\overline{u_{R}^{p}}\gamma^{\mu}d_{R}^{r}][\overline{u_{R}^{s}}\gamma^{\nu}d_{R}^{t})(j_{\mu\nu}^{\alpha\beta})$
O _{prst} LRLR, S/P	$(\overline{u_L^{\rho}}d_R^r)[\overline{u_L^s}d_R^t](j^{lphaeta}/j_5^{lphaeta})$	$\mathcal{O}_{\textit{prst}}^{\textit{RLRL}, \; S/P}$	$(\overline{u_R^{\rho}}d_L^r)[\overline{u_R^s}d_L^t](j^{\alpha\beta}/j_5^{\alpha\beta})$
$\tilde{O}_{prst}^{LRLR, S/P}$	$(\overline{u_L^{\rho}}d_R^r][\overline{u_L^s}d_R^t)(j^{lphaeta}/j_5^{lphaeta})$	$\tilde{O}_{prst}^{RLRL, S/P}$	$(\overline{u_{R}^{p}}d_{L}^{r}][\overline{u_{R}^{s}}d_{L}^{t})(j^{lphaeta}/j_{5}^{lphaeta})$
O ^{LRLR, T}	$(\overline{u_L^{\rho}}\sigma^{\mu\nu}d_R^r)[\overline{u_L^s}d_R^t](j_{\mu\nu}^{\alpha\beta})$	$\mathcal{O}_{\textit{prst}}^{\textit{RLRL}, T}$	$(\overline{u_R^{\rho}}\sigma^{\mu\nu}d_L^r)[\overline{u_R^s}d_L^t](j_{\mu\nu}^{\alpha\beta})$
$\tilde{O}_{prst}^{LRLR, T}$	$(\overline{u_L^{\rho}}\sigma^{\mu\rho}d_R^r)[\overline{u_L^s}\sigma^{\nu}_{\ \rho}d_R^t](j^{\alpha\beta}_{\mu\nu})$	$\tilde{O}_{prst}^{RLRL, T}$	$(\overline{u_{R}^{\rho}}\sigma^{\mu\rho}d_{L}^{r})[\overline{u_{R}^{s}}\sigma^{\nu}_{\rho}d_{L}^{t}](j_{\mu\nu}^{\alpha\beta})$
O ^{LRLL, V/A} prst	$(\overline{u_L^p} d_R^r) [\overline{u_L^s} \gamma^\mu d_L^t] (j_\mu^{\alpha\beta} / j_{5, \mu}^{\alpha\beta})$	O _{prst} RLRR, V/A	$(\overline{u_R^{\rho}}d_L^r)[\overline{u_R^s}\gamma^{\mu}d_R^t](j_{\mu}^{\alpha\beta}/j_{5,\ \mu}^{\alpha\beta})$
$\tilde{O}_{prst}^{LRLL, V/A}$	$(\overline{u_L^p}d_R^r][\overline{u_L^s}\gamma^\mu d_L^t)(j_\mu^{\alpha\beta}/j_{5,\mu}^{\alpha\beta})$	$\tilde{O}_{prst}^{RLRR, V/A}$	$(\overline{u_R^{p}}d_L^{r}][\overline{u_R^{s}}\gamma^{\mu}d_R^{t})(j_{\mu}^{\alpha\beta}/j_{5,\mu}^{\alpha\beta})$
O _{prst} LRRR, V/A	$(\overline{u_L^p} d_R^r) [\overline{u_R^s} \gamma^\mu d_R^t] (j_\mu^{\alpha\beta} / j_{5, \mu}^{\alpha\beta})$	O _{prst} RLLL, V/A	$(\overline{u_R^p}d_L^r)[\overline{u_L^s}\gamma^{\mu}d_L^t](j_{\mu}^{\alpha\beta}/j_{5,\mu}^{\alpha\beta})$
$\tilde{O}_{prst}^{LRRR, V/A}$	$(\overline{u_L^p} d_R^r] [\overline{u_R^s} \gamma^\mu d_R^t) (j_\mu / j_{5, \mu}^{\alpha\beta})$	$\tilde{O}_{prst}^{RLLL, V/A}$	$(\overline{u_R^{\rho}} d_L^r] [\overline{u_L^s} \gamma^{\mu} d_L^t) (j_{\mu} / j_{5, \mu}^{\alpha\beta})$
$\mathcal{O}_{prst}^{LRRL, \; S/P}$	$(\overline{u_L^{\rho}}d_R^r)[\overline{u_R^s}d_L^t](j^{lphaeta}/j_5^{lphaeta})$	$\tilde{O}_{prst}^{LRRL, S/P}$	$(\overline{u_L^{\rho}} d_R^r] [\overline{u_R^s} d_L^t) (j^{\alpha\beta} / j_5^{\alpha\beta})$
Oprst Contract Contra	$(\overline{u_L^{\rho}}\sigma^{\mu\nu}d_R^r)[\overline{u_R^s}d_L^t](j_{\mu\nu}^{\alpha\beta})$	O ^{LRRL, T2} prst	$(\overline{u_L^{p}}d_R^r)[\overline{u_R^s}\sigma^{\mu\nu}d_L^t](j_{\mu\nu}^{\alpha\beta})$
$\tilde{O}_{prst}^{LRRL, T1}$	$(\overline{u_L^{\rho}}\sigma^{\mu\nu}d_R^r][\overline{u_R^s}d_L^t)(j_{\mu\nu}^{\alpha\beta})$	$\tilde{O}_{prst}^{LRRL, T2}$	$(\overline{u_L^{\rho}}d_R^r)[\overline{u_R^s}\sigma^{\mu\nu}d_L^t)(j_{\mu\nu}^{\alpha\beta})$

•
$$j^{\alpha\beta} = (\overline{l_{\alpha}}l^{\mathcal{C}}_{\beta}), j^{\alpha\beta}_{5} = (\overline{l_{\alpha}}\gamma_{5}l^{\mathcal{C}}_{\beta}), j^{\alpha\beta}_{5, \mu} = (\overline{l_{\alpha}}\gamma_{\mu}\gamma_{5}l^{\mathcal{C}}_{\beta}) \text{ (symmetric)}$$

• $j^{\alpha\beta}_{\mu} = (\overline{l_{\alpha}}\gamma_{\mu}l^{\mathcal{C}}_{\beta}), j^{\alpha\beta}_{\mu\nu} = (\overline{l_{\alpha}}\sigma_{\mu\nu}\gamma_{\beta}l^{\mathcal{C}}_{\beta}), j^{\alpha\beta}_{5, \mu\nu} = (\overline{l_{\alpha}}\sigma_{\mu\nu}\gamma_{5}l^{\mathcal{C}}_{\beta}) \text{ (anti-symmetric)}$

14/27

Why $K^- \rightarrow \pi^+ \mu^- \mu^-$?	Backgrounds of different EFTs	Back to $K^- o \pi^+ \mu^- \mu^-$	Conclusion

- $_{(}$ PT 1: basics
 - Here we only focus on mesonic part;
 - Origin: QCD has an approximate G = SU(3)_L × SU(3)_R flavor symmetry for u, d, s quarks;
 - Characteristic scale: Λ_{QCD};
 - **Fields**: Pseudo Nambu-Goldstone bosons, i.e., light mesons, represented as $\xi = \sqrt{\Sigma} = \exp[i\pi^a \lambda^a/2F_0]$; and possibly, the external sources;
 - Under $G: \xi \to L\xi U^{\dagger} = U\xi R^{\dagger};$
 - Mesonic χ PT=all possible local, *G* invariant operators constructed via D_{μ} and $\xi(\Sigma)$, and ordered by number of derivatives $\mathcal{O}(p^n)$, for instance, $\mathcal{L}_{p^2} = \frac{F_0^2}{4} \text{Tr}[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}] + \frac{F_0^2}{4} (2B_0) \text{Tr}[M \Sigma^{\dagger} + \Sigma M^{\dagger}]$
 - The state of art: \mathcal{L}_{p^4} [Gasser & Leutwyler], \mathcal{L}_{p^6} [9408346, 9902437], \mathcal{L}_{p^8} [1810.06834]

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

χ PT 2: How to construct hadronic operators from quark level operators?

The method of spurion analysis

• Step 1: Take the quark level operator(irrep. under G) as

 $\mathcal{O} = \mathcal{T}_{cd}^{ab}(\overline{q_{X1}}^c \Gamma_1 q_{Y1,a})(\overline{q_{X2}}^d \Gamma_2 q_{Y2,b}) \sim \mathcal{T}_{cd}^{ab}\overline{q_{X1}}^c \overline{q_{X2}}^d q_{Y1,a}q_{Y2,b}$

 $X_i(Y_i)$ are chiral projectors P_L/P_R . Under chiral group *G*, the quark fields transform as

$$q_{L,a} \rightarrow L^{\ p}_{a} q_{L,p}, \ \overline{q_{R}}^{\ b} \rightarrow \overline{q_{R}}^{\ p} (R^{\dagger})^{\ b}_{\rho}, \ q_{R,a} \rightarrow R^{\ p}_{a} q_{R,\rho}, \ \overline{q_{L}}^{\ b} \rightarrow \overline{q_{L}}^{\ p} (L^{\dagger})^{\ b}_{\rho}$$

Require \mathcal{O} to be invariant under chiral group, which means treat \mathcal{T}_{cd}^{ab} as a spurion field with a proper transformation law.

- Step 2: Construct the corresponding hadronic operators by T_{cd}^{ab} together with the Nambu-Goldstone matrix ξ,..., and require the resulting operators to be invariant under G;
- Step 3: For each independent operator, accompany an unknown low energy constant.

χ PT 3: How to construct hadronic operators from quark level operators?

We find the LO matching is the simple replacement:

 $q_{L,a} \rightarrow \xi_a^{\ \alpha}, \ \overline{q_L}^a \rightarrow \xi_\alpha^{\dagger \ a}, \ q_{R,a} \rightarrow \xi_a^{\dagger \ \alpha}, \ \overline{q_R}^a \rightarrow \xi_\alpha^{\ a}$

with the Greek letters contracted with each other. And for the NLO matching,

 $q_{L,a} \rightarrow ((D_{\mu}\xi^{\dagger})^{\dagger})^{\,\alpha}_{a}, \ \overline{q_{L}}^{a} \rightarrow (D_{\mu}\xi^{\dagger})^{\,a}_{\alpha}, \ q_{R,a} \rightarrow (D_{\mu}\xi)^{\,\alpha}_{a}, \ \overline{q_{R}}^{a} \rightarrow (D_{\mu}\xi)^{\dagger a}_{\alpha}$

with $D_{\mu} = \partial_{\mu} + (\xi^{\dagger} \partial_{\mu} \xi + \xi \partial_{\mu} \xi^{\dagger})/2.$

- **Remark 1**: Using the above replacement, we reproduced the results by Savage 99, Graesser 17, Cirigliano et al 17;
- Remark 2: We see the matching is irrelevant with the color contraction of quark level operators, which means the operators with different color contractions will match onto the same hadronic operators but with different low energy constants.
- The low energy constants can be determined by chiral symmetry, LQCD,...

1) Why $K^- o \pi^+ \mu^- \mu^-$?

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^ 0 \bullet 0000$ Conclusion

Operator basis for $K^- \rightarrow \pi^+ \mu^- \mu^-$ in LEFT

Operator	Specific form	Chiral $SU(3)_L \times SU(3)_R$ representation
$O_{udus}^{LLLL, S/P}$	$(\overline{u_L}\gamma^{\mu}d_L)[\overline{u_L}\gamma_{\mu}s_L](j/j_5)$	$27_L imes 1_R$
$O_{udus}^{LRLR, S/P}$	$(\overline{u_L}d_R)[\overline{u_L}s_R](j/j_5)$	$ar{f 6}_L imes{f 6}_R$
$\tilde{O}_{udus}^{LRLR, S/P}$	$(\overline{u_L}d_R][\overline{u_L}s_R)(j/j_5)$	$ar{f 6}_L imes{f 6}_R$
$\mathcal{O}_{uiuj}^{LRLL, A}$	$(\overline{u_L}i_R)[\overline{u_L}\gamma^{\mu}j_L]j_{5,\ \mu}$	$ ilde{ extsf{15}}_L imes extsf{3}_R$
$\tilde{O}_{uiuj}^{LRLL, A}$	$(\overline{u_L}i_R][\overline{u_L}\gamma^{\mu}j_L)j_{5,\ \mu}$	$ar{15}_L imes ar{3}_R$
$\mathcal{O}_{u(dus)}^{LRRR, A}$	$\frac{1}{2} \left[(\overline{u_L} d_R) [\overline{u_R} \gamma^{\mu} s_R] + d \leftrightarrow s \right] j_{5, \mu}$	$ar{f 3}_L imes{f 15}_R$
$\mathcal{O}_{u[dus]}^{LRRR, A}$	$\frac{1}{2} \left[(\overline{u_L} d_R) [\overline{u_R} \gamma^{\mu} s_R] - d \leftrightarrow s \right] j_{5, \mu}$	$ar{f s}_L imesar{f s}_R$
$\tilde{O}_{u(dus)}^{LRRR, A}$	$\frac{1}{2} \left[(\overline{u_L} d_R) [\overline{u_R} \gamma^{\mu} s_R) + d \leftrightarrow s \right] j_{5, \mu}$	$ar{f 3}_L imes{f 15}_R$
$\tilde{O}_{u[dus]}^{LRRR, A}$	$\frac{1}{2} \left[(\overline{u_L} d_R) [\overline{u_R} \gamma^{\mu} s_R) - d \leftrightarrow s \right] j_{5, \mu}$	$ar{f s}_L imesar{f s}_R$
$\mathcal{O}_{uiuj}^{LRRL, S/P}$	$(\overline{u_L}i_R)[\overline{u_R}j_L](j/j_5)$	$8_L imes 8_R$
$\tilde{O}_{uiuj}^{LRRL, S/P}$	$(\overline{u_L}i_R][\overline{u_R}j_L)(j/j_5)$	$8_L imes 8_R$

and also the parity partner operators with $L \leftrightarrow R$. The lepton current $j = (\overline{\mu}\mu^{C}), j_{5} = (\overline{\mu}\gamma_{5}\mu^{C}), j_{5, \mu} = (\overline{\mu}\gamma_{\mu}\gamma_{5}\mu^{C}), and (i, j) = (d, s) or (i, j) = (s, d)$, respectively.

- There are totally <u>36</u> operators for the process;
- They take 11 different irreducible representations of chiral group SU(3)_L × SU(3)_R;
- Different operators corresponding to the same chiral representation will match onto the same hadronic operators but different coefficients.

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

Matching between LEFT and SMEFT at m_W

If we assume the local dim-9 LEFT operators stemmed from SMEFT dim-7 operators, therefore, the matching results are

$$\begin{array}{lll} C^{LLLL, \ S/P}_{udw}(m_W) &=& -2\sqrt{2}G_F V_{ud}V_{us} \left(C^{22\dagger}_{LHD1}(m_W) + 4C^{22\dagger}_{LHW}(m_W)\right), \\ \bar{C}^{LRRL \ S/P}_{udw}(m_W) &=& 2\sqrt{2}G_F V_{ud}V_{us}C^{1122\dagger}_{\bar{d}uLLD}(m_W), \\ \bar{C}^{LRRL \ S/P}_{usud}(m_W) &=& 2\sqrt{2}G_F V_{ud}V_{us}C^{2122\dagger}_{\bar{d}uLLD}(m_W), \end{array}$$

and all others vanish.

QCD running effect:

$$\begin{split} & \mu \frac{d}{d\mu} C_{udus}^{LLLL, \ S/P} &= -\frac{\alpha_s}{2\pi} \left(\frac{3}{N} - 3\right) C_{udus}^{LLLL, \ S/P}, \\ & \mu \frac{d}{d\mu} \left(C_{uij}^{LRRL, \ S/P} \atop \tilde{C}_{uij}^{LRRL, \ S/P} \right) &= -\frac{\alpha_s}{2\pi} \left(\frac{6C_F}{0} - \frac{3}{N} \right) \left(\frac{C_{uij}^{LRRL, \ S/P}}{\tilde{C}_{uij}^{LRRL, \ S/P} \right). \end{split}$$

which gives

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$ 000000 Conclusion

Matching between LEFT and χ PT at m_K

From the SMEFT perspective, here we only need to consider the hadronic partners of ten LEFT operators:

• $\mathcal{O}_{udus}^{LLLL, S/P}$ $\mathcal{Q}_{27\times1} = 2g_{27\times1}^{K\pi} F_0^4 (\xi i D_\mu \xi^\dagger)_2^1 (\xi i D^\mu \xi^\dagger)_3^1 (j/j_5) = g_{27\times1}^{K\pi} F_0^2 \partial_\mu K^- \partial^\mu \pi^- (j/j_5) + \cdots,$ • $\mathcal{O}_{uiuj}^{LRRL, S/P}$ and $\tilde{\mathcal{O}}_{uiuj}^{LRRL, S/P} ((i, j) = (d, s) \text{ or } (i, j) = (s, d):$ $\mathcal{Q}_{8\times8}^1 = g_{8\times8}^{K\pi} \frac{F_0^2}{4} (\xi^{\dagger 2})_i^1 (\xi^2)_j^1 (j/j_5) = \frac{1}{2} g_{8\times8}^{K\pi} F_0^2 K^- \pi^- (j/j_5) + \cdots,$ $\mathcal{Q}_{8\times8}^2 = g_{8\times8}^{K\pi i} \frac{F_0^2}{4} (\xi^{\dagger 2})_i^1 (\xi^2)_j^1 (j/j_5) = \frac{1}{2} g_{8\times8}^{K\pi i} F_0^2 K^- \pi^- (j/j_5) + \cdots,$

• Chiral symmetry, experimental data, and LQCD \Rightarrow LECs: $g_{27\times1}^{K\pi}$, $g_{8\times8}^{K\pi'}$, $g_{8\times8}^{K\pi'}$, $g_{8\times8}^{K\pi'}$ [1805.02634, 1806.02780]:

$$g_{27\times1}^{K\pi} = \frac{5}{6}g_1^{\pi\pi} = 0.3, \ g_{8\times8}^{K\pi} = -\frac{1}{2}g_5^{\pi\pi} = 4\text{GeV}^2. \ g_{8\times8}^{K\pi\prime} = -\frac{1}{2}g_4^{\pi\pi} = 1\text{GeV}^2$$

21/27

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

Effective Lagrangian for $K^- \rightarrow \pi^+ \mu^- \mu^-$

$$\mathcal{L}_{K^- o \pi^+ \mu^- \mu^-} = rac{1}{2} \mathcal{K}^- \pi^- (c_1 j + c_2 j_5) + rac{1}{2} \partial^\mu \mathcal{K}^- \partial_\mu \pi^- (c_3 j + c_4 j_5)$$

with

$$j = (\overline{\mu}\mu^{C}), j_{5} = (\overline{\mu}\gamma_{5}\mu^{C})$$

and

$$\begin{split} c_{1} &= c_{2} &= \left(C_{udus}^{LRRL, \ S/P}(m_{K}) + C_{usud}^{LRRL, \ S/P}(m_{K}) \right) g_{8\times8}^{K} F_{0}^{2} \\ &+ \left(\tilde{C}_{udus}^{LRRL, \ S/P}(m_{K}) + \tilde{C}_{usud}^{LRRL, \ S/P}(m_{K}) \right) g_{8\times8}^{K\pi} F_{0}^{2} \\ &= \left(\tilde{C}_{udus}^{LRRL, \ S/P}(m_{W}) + \tilde{C}_{usud}^{LRRL, \ S/P}(m_{W}) \right) \left(0.45 g_{8\times8}^{K\pi} + 0.9 g_{8\times8}^{K\pi'} \right) F_{0}^{2} \\ &= 2\sqrt{2} G_{F} V_{ud} V_{us} \left(C_{duLD}^{1122\dagger}(m_{W}) + C_{duLD}^{2122\dagger}(m_{W}) \right) \left(0.45 g_{8\times8}^{K\pi} + 0.9 g_{8\times8}^{K\pi'} \right) F_{0}^{2} \\ &= 1.62 C_{udus}^{LLLL, \ S/P}(m_{K}) g_{27\times1}^{K\pi} F_{0}^{2} \\ &= -2\sqrt{2} G_{F} V_{ud} V_{us} \left(C_{2LH}^{22\dagger}(m_{W}) + 4 C_{LHW}^{22\dagger}(m_{W}) \right) \left(1.62 g_{27\times1}^{K\pi} \right) F_{0}^{2} , \end{split}$$

22/27

Backgrounds of different EFTs

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$ 00000 Conclusion

Effective Lagrangian for $K^- \rightarrow \pi^+ \mu^- \mu^{-1}$

The decay width calculated to be

ſ

$$F_{K^- o \pi^+ \mu^- \mu^-} = rac{1}{2!} rac{1}{2m_K} rac{1}{128\pi^3 m_K^2} \int ds \int dt |\mathcal{M}|^2,$$

with

$$\sum |\mathcal{M}_{ ext{SMEFT}}|^2 \;\; = \;\; \left| 2c_1 + c_3 \left(m_K^2 + m_\pi^2 - s
ight)
ight|^2 \left(s - 2m_\mu^2
ight)$$

Experimentally,

$$egin{aligned} & \mathsf{Br}(\mathcal{K}^- o \pi^+ \mu^- \mu^-) < 4.2 imes 10^{-11} [1905.07770] \ & \Rightarrow \Lambda_{\mathsf{NP}} \sim \left(rac{1}{\mathcal{C}_{dulLD}^{1122\dagger}}
ight)^rac{1}{3} > \mathcal{O}(0.1) \mathsf{GeV} \end{aligned}$$

- Remark 1: all calculation is done in tree level for estimation;
- Remark 2: the constraint for NP scale is rather loose than 0νββ:
 O(1)TeV;

1) Why $K^- o \pi^+ \mu^- \mu^-$?

Back to $K^- \rightarrow \pi^+ \mu^- \mu^-$

Conclusion

- $K^- \rightarrow \pi^+ \mu^- \mu^-$ is studied in the framework of EFTs;
- Matching and running is done between different EFTs;
- The experimental constraint for the process is rather loose, but it opens new way to detect LNVs and NP signals.

Next project

- Estimate the uncertainties from χPT calculation via chiral logarithms;
- Extend to long-range case and other decay channels;
- Extend to the LNV decays of other heavier mesons.

