New horizon in lattice flavor physics

冯旭

第十七届重味物理和CP破坏研讨会@呼和浩特 2019年07月30日

How LQCD calculations are calibrated

LQCD calculation starts from the QCD Lagrangian

$$L = \frac{1}{4g_s^2} \operatorname{Tr} [F_{\mu\nu} F_{\mu\nu}] + \sum_f \bar{q}_f (D + m_f) q_f$$

Input parameters

- strong coupling constant $\alpha_s^{lat} = g_s^2/4\pi$
- quark masses m_f , for each flavor
 - isospin limit $m_u = m_d \implies N_f = 2$
 - strange and charm quark, $N_f = 2 + 1$, $N_f = 2 + 1 + 1$
 - bottom: only in the valence
 - top: decays before it can hadronize, too heavy thus ignored

• For each value of α_s^{lat} , choose physical bare quark masses by requiring e.g.

 $\frac{am_{\pi}}{am_{\Omega}}, \frac{am_{K}}{am_{\Omega}}, \frac{am_{D}}{am_{\Omega}}, \frac{am_{B}}{am_{\Omega}} \Rightarrow \text{take physical values}$

Define lattice spacing by imposing, e.g.

$$a = \frac{am_{\Omega}}{m_{\Omega}^{\rm phys}}$$

Milestone: mass spectrum

Hadron spectrum from lattice QCD

• Input: α_s , quark masses; set by π , K, \cdots (empty symbols in the plot)

Mile stone: $f_{K^{\pm}}/f_{\pi^{\pm}}$ and $f_{+}(0)$

Flavor Lattice Averaging Group (FLAG) average 2019

$$f_{+}^{\kappa\pi}(0) = 0.9706(27) \implies 0.28\% \text{ error}$$

 $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1932(19) \implies 0.16\% \text{ error}$

Experimental information [arXiv:1411.5252, 1509.02220]

$$\begin{array}{lll} \mathcal{K}_{\ell 3} & \Rightarrow & |V_{us}|f_{+}(0) = 0.2165(4) & \Rightarrow & |V_{us}| = 0.2231(7) \\ \mathcal{K}_{\mu 2}/\pi_{\mu 2} & \Rightarrow & \left|\frac{V_{us}}{V_{ud}}\right|\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) & \Rightarrow & \left|\frac{V_{us}}{V_{ud}}\right| = 0.2313(5) \\ \end{array}$$

Flag average 2019

Error < 1%

	N _f	FLAG average	Frac. Err.
f_K/f_{π}	2 + 1 + 1	1.1932(19)	0.16%
$f_{+}(0)$	2 + 1 + 1	0.9706(27)	0.28%
f_D	2 + 1 + 1	212.0(7) MeV	0.33%
f_{D_s}	2 + 1 + 1	249.9(5) MeV	0.20%
f_{D_s}/f_D	2 + 1 + 1	1.1783(16)	0.13%
f _B	2 + 1 + 1	190.0(1.3) MeV	0.68%
f_{B_s}	2 + 1 + 1	230.3(1.3) MeV	0.56%
f_{B_s}/f_B	2 + 1 + 1	1.209(5)	0.41%

Error < 5%

	N _f	FLAG average	Frac. Err.
Âκ	2 + 1	0.7625(97)	1.3%
$f_{+}^{D\pi}(0)$	2 + 1	0.666(29)	4.4%
$f_{+}^{DK}(0)$	2 + 1	0.747(19)	2.5%
\hat{B}_{B_s}	2 + 1	1.35(6)	4.4%
B_{B_s}/B_{B_d}	2 + 1	1.032(28)	3.7%

Precision beyond $1\% \Rightarrow$ time to include QED

Full QCD + QED action is

$$S^{\mathrm{full}} = \frac{1}{4g_s^2}S^{\mathrm{YM}} + \sum_f \left\{S^{\mathrm{kim}}_f + m_f S^{\mathrm{m}}_f\right\} + S^A + \sum_\ell \left\{S^{\mathrm{kim}}_\ell + m_\ell S^{\mathrm{m}}_\ell\right\}$$

- $\bullet\,$ Only in full theory, phys. results ${\cal O}^{\rm phys}$ can be reproduced unambiguously
- $O^{\rm phys} = O^{\rm QCD} + \delta Q^{\rm QED}$ is prescription dependent
- "Hadronic scheme" recently proposed by [Di Carlo et. al., arXiv:1904.08731]
 - impose same condition as in pure QCD

 $\frac{am_{\pi}}{am_{\Omega}}, \frac{am_{K^0}}{am_{\Omega}}, \frac{am_{K^+}}{am_{\Omega}}, \frac{am_D}{am_{\Omega}}, \frac{am_B}{am_{\Omega}} \Rightarrow \text{take physical values}$

- Add mass counterterms $m_f = m_f^0 + \delta m_f$ and $a = a_0 + \delta a$
- For a general observable O

$$O^{\rm phys} = \frac{\langle aO \rangle^{\rm full}}{a} = \underbrace{\frac{\langle a_0 O \rangle^{\rm QCD}}{a_0}}_{O^{\rm QCD} = O^{\rm ISO} + \delta O^{\rm SIB}} + \underbrace{\frac{\delta O}{a_0} - \frac{\delta a}{a_0^2} \langle a_0 O \rangle^{\rm QCD}}_{\delta O^{\rm QCD}} + O(\alpha_{EM}^2)$$

• GRS scheme: $g_s^{\overline{\text{MS}}}(\mu)$, $m_f^{\overline{\text{MS}}}(\mu)$ in pure QCD = that in QCD+QED [Gasser, Rusetsky, Scimemi, hep-ph/0305260]

Leptonic decay rates

Consider the leptonic decay in pure QCD

$$\Gamma(P^- \to \ell^- \bar{\nu}_{\ell}) = \frac{G_F^2 |V_{ij}|^2 f_P^2}{8\pi} m_P m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_P^2}\right)^2, \quad \langle 0|A_{\mu}|P(p)\rangle = i f_P p_{\mu}$$

• f_P as "pure QCD" quantity, is scheme dependent

Inclusive decay rate

 $\Gamma(P^- \to \ell^- \bar{\nu}_{\ell}(\gamma)) = \Gamma(P^- \to \ell^- \bar{\nu}_{\ell}) + \Gamma(\ell^- \bar{\nu}_{\ell}\gamma)$

• Define prescription independent quantity, up to $O(\alpha_{EM}^2)$

$$\mathcal{F}_{P}^{2} \equiv \frac{\Gamma(P^{-} \to \ell^{-} \bar{\nu}_{\ell}(\gamma))}{G_{F}^{2} |V_{ij}|^{2} m_{P}^{\text{phys}} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{P}^{\text{phys}^{2}}}\right)^{2}} = f_{P}^{2} (1 + \delta R_{P})$$

- f_P only contains part of the QCD effects
- δR_P depends on the structure of hadron

First lattice study using GRS scheme [Giusti et. al. PRL120 (2018) 072001] $\delta R_{K\pi} \equiv \delta R_K - \delta R_{\pi} = -0.0122(16)$ VS $\delta R_{K\pi}^{ChPT} = -0.0112(21)$ quoted by PD/G₂₇

$K \rightarrow \pi\pi$ decays and direct *CP* violation

CP violation is first observed in neutral Kaon decays

• CP eigenstates

- Under *CP* transform: $CP|K^0\rangle = -|\overline{K^0}\rangle$
- Define *CP* eigenstates: $K_{\pm}^0 = (K^0 \mp \overline{K^0})/\sqrt{2}$
- Weak eigenstates
 - $K_S \rightarrow 2\pi (CP = +)$
 - $K_L \rightarrow 3\pi (CP = -)$
- Neglecting *CP* violation, we have $K_S = K^0_+$ and $K_L = K^0_-$

1964, BNL discovered $K_L \rightarrow 2\pi \Rightarrow CP$ violation \Rightarrow Nobel prize (1980)

Direct and indirect CP violation

• $K_{L/S}$ are not CP eigenstates

$$|\mathcal{K}_{L/S}\rangle = \frac{1}{\sqrt{1+\bar{\epsilon}^2}} \left(|\mathcal{K}^0_{\mp}\rangle + \bar{\epsilon}|\mathcal{K}^0_{\pm}\rangle\right)$$

•
$$K_L \rightarrow 2\pi (CP = +)$$

• $K^0_+ \rightarrow 2\pi (\text{indirect } CP \text{ violation, } \epsilon \text{ or } \epsilon_K)$
• $K^0_- \rightarrow 2\pi (\text{direct } CP \text{ violation, } \epsilon')$

Direct and indirect CP violation

• $K_{L/S}$ are not CP eigenstates

$$|\mathcal{K}_{L/S}\rangle = \frac{1}{\sqrt{1+\overline{\epsilon}^2}} \left(|\mathcal{K}^0_{\pm}\rangle + \overline{\epsilon}|\mathcal{K}^0_{\pm}\rangle\right)$$

•
$$K_L \rightarrow 2\pi (CP = +)$$

• $K^0_+ \rightarrow 2\pi (\text{indirect } CP \text{ violation, } \epsilon \text{ or } \epsilon_K)$
• $K^0_- \rightarrow 2\pi (\text{direct } CP \text{ violation, } \epsilon')$

Experimental measurement

$$\frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \equiv \eta_{+-} \equiv \epsilon + \epsilon'$$
$$\frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \equiv \eta_{00} \equiv \epsilon - 2\epsilon'$$

• Using $|\eta_{+-}|$ and $|\eta_{00}|$ as input, PDG quotes

 $|\epsilon| \approx \frac{1}{3} \left(2|\eta_{+-}| + |\eta_{00}| \right) = 2.228(11) \times 10^{-3}, \quad \operatorname{Re}[\epsilon'/\epsilon] \approx \frac{1}{3} \left(1 - \frac{|\eta_{00}|}{|\eta_{+-}|} \right) = 1.66(23) \times 10^{-3}$

 ϵ' is 1000 times smaller than the indirect CP violation ϵ

Thus direct *CP* violation ϵ' is very sensitive to New Physics

$K \rightarrow \pi \pi$ decays and *CP* violation

• Theoretically, Kaon decays into the isospin I = 2 and 0 $\pi\pi$ states

 $\Delta I = 3/2 \text{ transition:} \quad \langle \pi \pi (I=2) | H_W | K^0 \rangle = A_2 e^{i\delta_2} \\ \Delta I = 1/2 \text{ transition:} \quad \langle \pi \pi (I=0) | H_W | K^0 \rangle = A_0 e^{i\delta_0}$

• If *CP* symmetry were protected $\Rightarrow A_2$ and A_0 are real amplitudes

• ϵ and ϵ' depend on the $K \to \pi \pi(I)$ amplitudes A_I

$$\begin{aligned} \epsilon &= \overline{\epsilon} + i \left(\frac{\operatorname{Im}[A_0]}{\operatorname{Re}[A_0]} \right) \\ \epsilon' &= \frac{i e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{\operatorname{Re}[A_2]}{\operatorname{Re}[A_0]} \left(\frac{\operatorname{Im}[A_2]}{\operatorname{Re}[A_2]} - \frac{\operatorname{Im}[A_0]}{\operatorname{Re}[A_0]} \right) \end{aligned}$$

The target for lattice QCD is to calculate both amplitude A_2 and A_0

Results for $K \rightarrow \pi \pi (I = 2)$

Results for A2 [RBC-UKQCD, PRD91 (2015) 074502]

• Use two ensembles (both at m_{π} = 135 MeV) for continuum extrapolation

 $48^3 \times 96$, a = 0.11 fm, L = 5.4 fm, $N_{\rm conf} = 76$ $64^3 \times 128$, a = 0.084 fm, L = 5.4 fm, $N_{\rm conf} = 40$

• After continuum extrapolation:

$$\begin{aligned} &\operatorname{Re}[A_2] = 1.50(4)_{\operatorname{stat}}(14)_{\operatorname{syst}} \times 10^{-8} \text{ GeV} \\ &\operatorname{Im}[A_2] = -6.99(20)_{\operatorname{stat}}(84)_{\operatorname{syst}} \times 10^{-13} \text{ GeV} \end{aligned}$$

• Experimental measurement:

 $Re[A_2] = 1.479(3) \times 10^{-8} \text{ GeV}$ $Im[A_2]$ is unknown

• Scattering phase at $E_{\pi\pi} = M_K$

 $\delta_2 = -11.6(2.5)(1.2)^\circ$

consistent with phenomenological analysis [Schenk, NPB363 (1991) 97]

Results for $K \rightarrow \pi \pi (I = 0)$

Results for A₀ [RBC-UKQCD, PRL115 (2015) 212001]

• Use a $32^3 \times 64$ ensemble, $N_{\rm conf}$ = 216, a = 0.14 fm, L = 4.53 fm

 $M_{\pi} = 143.1(2.0) \text{ MeV}, \quad M_{K} = 490(2.2) \text{ MeV}, \quad E_{\pi\pi} = 498(11) \text{ MeV}$

- G-boundary condition is used: non-trivial to tune the volume $\Rightarrow M_K = E_{\pi\pi}$
- The largest contributions to Re[A₀] and Im[A₀] come from Q₂ (current-current) and Q₆ (QCD penguin) operator

• Scattering phase at $E_{\pi\pi} = M_{K}$: $\delta_0 = 23.8(4.9)(1.2)^{\circ}$

• somewhat smaller than phenomenological expectation $\delta_0 = 38.0(1.3)^{\circ}$ [Courtesy of G. Colangelo] 13/27

Results for $\operatorname{Re}[A_0]$, $\operatorname{Im}[A_0]$ and $\operatorname{Re}[\epsilon'/\epsilon]$

[RBC-UKQCD, PRL115 (2015) 212001]

- Determine the $K \rightarrow \pi \pi (I = 0)$ amplitude A_0
 - Lattice results

$$\begin{split} &\operatorname{Re}[A_0] = 4.66(1.00)_{\mathrm{stat}}(1.26)_{\mathrm{syst}} \times 10^{-7} \text{ GeV} \\ &\operatorname{Im}[A_0] = -1.90(1.23)_{\mathrm{stat}}(1.08)_{\mathrm{syst}} \times 10^{-11} \text{ GeV} \end{split}$$

Experimental measurement

 ${
m Re}[A_0] = 3.3201(18) \times 10^{-7} {
m GeV}$ ${
m Im}[A_0]$ is unknown

• Determine the direct *CP* violation $\operatorname{Re}[\epsilon'/\epsilon]$

$$\begin{split} & {\rm Re}[\epsilon'/\epsilon] = 0.14(52)_{\rm stat}(46)_{\rm syst} \times 10^{-3} & {\rm Lattice} \\ & {\rm Re}[\epsilon'/\epsilon] = 1.66(23) \times 10^{-3} & {\rm Experiment} \end{split}$$

2.1 σ deviation \Rightarrow require more accurate lattice results

Add more statistics

- Statistics increased: $216 \rightarrow 1400$ configs
 - $\pi\pi$ - $\pi\pi$ correlator well-described by a single $\pi\pi$ state
 - $δ_0 = 23.8(4.9)(1.2)^\circ → 19.1(2.5)(1.2)^\circ ??$ $<math>\chi^2/DoF = 1.6$

Reported by T. Wang at Lattice 2019

• Systematic effects reduced: using S-wave $\pi\pi(111)$, $\pi\pi(311)$, σ

Helpful to introduce the σ operator

Comparison with Colangelo et. al's dispersion analysis

Understanding $I = 0 \pi \pi$ system is crucial:

• $E_{\pi\pi}$ needed for extraction of $K \rightarrow \pi\pi$ matrix element

• δ enters Lellouch-Luscher finite-volume correction to matrix element Effect on $K \rightarrow \pi\pi$ as yet undetermined, awaiting final $\pi\pi$ numbers

Rare Kaon Decays

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment vs Standard model

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: largest contribution from top quark loop, thus theoretically clean

$$\mathcal{H}_{eff} \sim \frac{G_F}{\sqrt{2}} \cdot \underbrace{\frac{\alpha_{\rm EM}}{2\pi \sin^2 \theta_W} \lambda_t X_t(x_t)}_{\mathcal{N} \sim 2 \times 10^{-5}} \cdot (\bar{s}d)_{V-A} (\bar{\nu}\nu)_{V-A}$$

Probe the new physics at scales of $\mathcal{N}^{-\frac{1}{2}}M_W = O(10 \text{ TeV})$

Past experimental measurement is 2 times larger than SM prediction

 $\begin{array}{l} {\rm Br}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} = 1.73^{+1.15}_{-1.05} \times 10^{-10} & [{\rm BNL \ E949, \ '08}] \\ {\rm Br}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = 9.11 \pm 0.72 \times 10^{-11} & [{\rm Buras \ et. \ al., \ '15}] \end{array}$

but still consistent with > 60% exp. error

New experiments

New generation of experiment: NA62 at CERN

- aims at observation of O(100) events
- 10%-precision measurement of $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$

Recent results [NA62, PLB791 (2019) 156]

- Detector installation completed in 09.2016
- Took data in 2016, 2017, 2018
- Full 2016 data \rightarrow 1.21 × 10¹¹ K⁺ decays collected \rightarrow Br < 14 × 10⁻¹⁰

2nd-order weak interaction and bilocal matrix element

Hadronic matrix element for the 2nd-order weak interaction

$$\int_{-T}^{T} dt \langle \pi^{+} \nu \bar{\nu} | T [Q_{A}(t)Q_{B}(0)] | K^{+} \rangle$$

=
$$\sum_{n} \left\{ \frac{\langle \pi^{+} \nu \bar{\nu} | Q_{A}| n \rangle \langle n | Q_{B}| K^{+} \rangle}{M_{K} - E_{n}} + \frac{\langle \pi^{+} \nu \bar{\nu} | Q_{B}| n \rangle \langle n | Q_{A}| K^{+} \rangle}{M_{K} - E_{n}} \right\} \left(1 - e^{(M_{K} - E_{n})T} \right)$$

• For $E_n > M_K$, the exponential terms exponentially vanish at large T

- For $E_n < M_K$, the exponentially growing terms must be removed
- \sum_{n} : principal part of the integral replaced by finite-volume summation
 - possible large finite volume correction when $E_n \rightarrow M_K$

[Christ, XF, Martinelli, Sachrajda, PRD 91 (2015) 114510]

Low lying intermediate states

Lattice results

First results @ m_{π} = 420 MeV, m_c = 860 MeV

[Bai, Christ, XF, Lawson, Portelli, Schrajda, PRL 118 (2017) 252001]

 $P_c = 0.2529(\pm 13)_{\rm stat}(\pm 32)_{\rm scale}(-45)_{\rm FV}$

Lattice QCD is now capable of first-principles calculation of rare kaon decay

• The remaining task is to control various systematic effects

$K \rightarrow \pi \ell^+ \ell^-$: *CP* conserving chanel

CP conserving decay: $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ and $K_S \rightarrow \pi^0 \ell^+ \ell^-$

• Involve both γ - and Z-exchange diagram, but γ -exchange is much larger

- Unlike Z-exchange, the γ -exchange diagram is LD dominated
 - By power counting, loop integral is quadratically UV divergent
 - EM gauge invariance reduces divergence to logarithmic
 - c u GIM cancellation further reduces log divergence to be UV finite

Focus on γ -exchange

• Hadronic part of decay amplitude is described by a form factor

$$T^{\mu}_{+,S}(p_{K},p_{\pi}) = \int d^{4}x \, e^{iqx} \langle \pi(p_{\pi}) | T\{J^{\mu}_{em}(x)\mathcal{H}^{\Delta S=1}(0)\} | K^{+}/K_{S}(p_{K}) \rangle$$

$$= \frac{G_{F}M^{2}_{K}}{(4\pi)^{2}} V_{+,S}(z) \left[z(p_{K}+p_{\pi})^{\mu} - (1-r^{2}_{\pi})q^{\mu} \right]$$

with $q = p_K - p_\pi$, $z = q^2/M_K^2$, $r_\pi = M_\pi/M_K$

The target for lattice QCD is to calculate the form factor $V_{+,S}(z)$

First exploratory calculation on $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

First exploratory calculation on $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

Conclusion

• For quantities such as f_K/f_{π} , $f_+(0)$, f_D , ...

N_f	FLAG average	Frac. Err.
2 + 1 + 1	1.1932(19)	0.16%
2 + 1 + 1	0.9706(27)	0.28%
2 + 1 + 1	212.0(7) MeV	0.33%
2 + 1 + 1	249.9(5) MeV	0.20%
2 + 1 + 1	1.1783(16)	0.13%
2 + 1 + 1	190.0(1.3) MeV	0.68%
2 + 1 + 1	230.3(1.3) MeV	0.56%
2 + 1 + 1	1.209(5)	0.41%
		$\begin{array}{ccc} N_f & \mbox{FLAG average} \\ 2+1+1 & 1.1932(19) \\ 2+1+1 & 0.9706(27) \\ 2+1+1 & 212.0(7) \ \mbox{MeV} \\ 2+1+1 & 249.9(5) \ \mbox{MeV} \\ 2+1+1 & 1.1783(16) \\ 2+1+1 & 190.0(1.3) \ \mbox{MeV} \\ 2+1+1 & 230.3(1.3) \ \mbox{MeV} \\ 2+1+1 & 1.209(5) \end{array}$

lattice QCD calculations play important role in precision flavor physics

- Horizon expanded to
 - EM corrections to leptonic decays
 - $K \rightarrow \pi\pi$ and ϵ'
 - rare kaon decays: $K \to \pi \nu \bar{\nu}$ and $K \to \pi \ell^+ \ell^-$
- Develop techniques for the new horizon

Remove zero mode - QED_L

Infinite volume propagator \Rightarrow

finite-volume propagator

Power-law $(1/L^n)$ finite volume effect as lattice volume L increase

28 / 2

Infinite volume reconstruction method

XF, Luchang Jin [arXiv:1812.09817]

QED self energy

• We start with infinite volume

$$\mathcal{I} = \frac{1}{2} \int d^4 x \,\mathcal{H}_{\mu,\nu}(x) S^{\gamma}_{\mu,\nu}(x)$$

- Propose to replace $\mathcal{H}_{\mu,
 u}(x)$ by $\mathcal{H}^{\mathrm{lat}}_{\mu,
 u}(x)$
 - $\mathcal{H}_{\mu,\nu}^{\text{lat}}(x)$ mainly differs from $\mathcal{H}_{\mu,\nu}(x)$ at $x \sim L$
- The hadronic part $\mathcal{H}_{\mu,\nu}(x)$ is given by

$$\begin{aligned} \mathcal{H}_{\mu,\nu}(x) &= \mathcal{H}_{\mu,\nu}(t,\vec{x}) = \langle P|T[J_{\mu}(t,\vec{x})J_{\nu}(0)]|P\rangle \\ &\Rightarrow J_{\mu}(t,\vec{x})J_{\nu}(0) \rightarrow e^{-M\sqrt{t^{2}+\vec{x}}} \\ &\Rightarrow \langle P|J_{\mu}(t,\vec{x}) \rightarrow e^{Mt} \end{aligned}$$

For small |t|, we have exponentially suppressed FV effects:

$$\mathcal{H}_{\mu,\nu}(t,\vec{x}) \sim e^{-M\left(\sqrt{t^2 + \vec{x}^2} - t\right)} \sim e^{-M|\vec{x}|} \quad \Rightarrow \quad \int d^3\vec{x} \,\mathcal{H}_{\mu,\nu}(x) - \mathcal{H}_{\mu,\nu}^{\mathrm{lat}}(x) \sim e^{-ML}$$

Infinite volume reconstruction method

XF, Luchang Jin [arXiv:1812.09817]

QED self energy

• We start with infinite volume

$$\mathcal{I} = \frac{1}{2} \int d^4 x \,\mathcal{H}_{\mu,\nu}(x) S^{\gamma}_{\mu,\nu}(x)$$

- Propose to replace $\mathcal{H}_{\mu,
 u}(x)$ by $\mathcal{H}^{\mathrm{lat}}_{\mu,
 u}(x)$
 - $\mathcal{H}_{\mu,\nu}^{\text{lat}}(x)$ mainly differs from $\mathcal{H}_{\mu,\nu}(x)$ at $x \sim L$
- The hadronic part $\mathcal{H}_{\mu,\nu}(x)$ is given by

$$\begin{aligned} \mathcal{H}_{\mu,\nu}(x) &= \mathcal{H}_{\mu,\nu}(t,\vec{x}) = \langle P|T[J_{\mu}(t,\vec{x})J_{\nu}(0)]|P\rangle \\ &+ J_{\mu}(t,\vec{x})J_{\nu}(0) \rightarrow e^{-M\sqrt{t^{2}+\vec{x}}} \\ &+ \langle P|J_{\mu}(t,\vec{x}) \rightarrow e^{Mt} \end{aligned}$$

For small |t|, we have exponentially suppressed FV effects:

$$\mathcal{H}_{\mu,\nu}(t,\vec{x}) \sim e^{-M\left(\sqrt{t^2 + \vec{x}^2} - t\right)} \sim e^{-M|\vec{x}|} \quad \Rightarrow \quad \int d^3\vec{x} \, \mathcal{H}_{\mu,\nu}(x) - \mathcal{H}_{\mu,\nu}^{\mathrm{lat}}(x) \sim e^{-ML}$$

Infinite volume reconstruction method

XF, Luchang Jin [arXiv:1812.09817]

For large |t|, we shall have:

$$\mathcal{H}_{\mu,\nu}(t,\vec{x}) \sim e^{-M\left(\sqrt{t^2+\vec{x}^2}-t\right)} \sim e^{-M\frac{\vec{x}^2}{2t}} \sim O(1)$$

Realizing at large $t > t_s$ we have ground state dominance:

$$\langle P|J_{\mu}(t,\vec{x})J_{\nu}(0)|P\rangle \sim \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} \langle P|J_{\mu}(0)|P(\vec{k})\rangle \langle P(\vec{k})|J_{\nu}(0)|P\rangle e^{-E_{\vec{k}}t+Mt} e^{-i\vec{k}\cdot\vec{x}}$$

• Reconstruct $\mathcal{H}_{\mu,\nu}(t,\vec{x})$ at large t using $\mathcal{H}_{\mu,\nu}(t_s,\vec{x})$ at modest t_s

$$\mathcal{H}_{\mu,\nu}(t,\vec{x}') \approx \int d^{3}\vec{x} \,\mathcal{H}_{\mu,\nu}(t_{s},\vec{x}) \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} e^{i\vec{k}\cdot\vec{x}} e^{-(E_{\vec{k}}-M)(t-t_{s})} e^{-i\vec{p}\cdot\vec{x}'}$$

Replace

$$\mathcal{H}_{\mu,\nu}(t,\vec{x}) \quad \Leftarrow \quad \mathcal{H}_{\mu,\nu}(t_s,\vec{x}) \quad \Leftarrow \quad \mathcal{H}_{\mu,\nu}^{\mathrm{lat}}(t_s,\vec{x})$$

The replacement only amounts for exponentially suppressed FV effects