第十七届全国重味物理和CP破坏研讨会 呼和浩特,2019年7月29日-8月1日

Compositeness relations, effective range expansion and extoic hadrons

Zhi-Hui Guo (郭志辉)

Hebei Normal University (河北师范大学)

郭志辉(河北师范大学)

Outline:

- 1. Background & Introduction
- 2. Compositeness relation for resonance
- 3. Effective range expansion
- 4. Exotic hadrons near thresholds
- 5. Summary

Background & Introduction

Prominent features of many exotic resonances:

(regardless of heavy/light flavors: X(3872), Zc/Zb, A(1405), Pc, ...)

Beyond Standard quark Model: BSqM

They lie quite close to the underlying thresholds.

Important question that follows:

Kinematical effects ? Or <u>Hadron molecular</u>? Or <u>Elementary/Compact state</u>?

- Theoretical methods to probe the composition of hadrons:
- ✓ QCD sum rules
- ✓ Pole counting rule
- ✓ Nc trajecotries of resonance poles
- ✓ Weinberg's compositeness relation

□ Pole counting rule [Morgan, NPA'92]

Criteria: Number of nearby poles in S-wave scattering amplitudes

- Elementary particle: A pair of poles close to threshold
- Molecular type: Single pole close to threshold
 X(3872): elementary state, instead of Dbar-D* molecule
 Zc(3900): molecule of Dbar-D* [Zheng et al., PRD '15 '16]

☐ Nc trajecotries of resonance poles [Guo et al., PRD '12 '15]

Pole counting rule and Nc trajectories only give qualitative conclusions.

In the non-relativistic situation, Quantum Mechanics gives

$$X = 1 - Z = \int d\alpha \frac{|\langle \varphi_{\alpha} | V | \psi_{B} \rangle|^{2}}{(E_{\alpha} - E_{B})^{2}}$$

$$X_{\ell S} = \frac{1}{2\pi^2} \int_0^\infty dk k^2 \frac{g_{\ell S}^2(k^2)}{(k^2/2\mu - E_B)^2}$$

[Aceti,Oset,PRD'12]

[Oller, AnnP'18]

$$X = 1 - Z = \int d\alpha \frac{|\langle \varphi_{\alpha} | V | \psi_{B} \rangle|^{2}}{(E_{\alpha} - E_{B})^{2}}$$

- Bound state √: Z and X are positive real numbers, allowing probabilistic interpretations
- **Resonance** ×: Z and X are usually complex, meaningless to be interpreted as probabilities
- We propose an alternative way to generalize Weinberg compositeness relation for resonances.

郭志辉(河北师范大学)

[Guo, Oller, PRD '16]

Probabilistic interpretation of compositeness relation for resonances

郭志辉(河北师范大学)

General form of T matrix for on-shell two-body scattering

$$T(s) = [\mathcal{K}(s)^{-1} + G(s)]^{-1}$$
$$G(s)_i = a(s_0)_i - \frac{s - s_0}{\pi} \int_{s_i}^{\infty} ds' \frac{\rho(s')_i}{(s' - s)(s' - s_0)}$$

- Unitarity relation : $\text{Im}T^{-1}(s)_{ij} = -\delta_{ij}\theta(s-s_i)\rho(s)_i$
- Relativistic phase space factor : $\rho(s)_i = q(s)_i / 8\pi\sqrt{s}$

(with *q*(*s*) the CM three-momentum)

• $\mathcal{K}(s)$: contact interactions and crossed channel effects

S- and T- matrix relation :

$$S(s) = I + i(2\rho(s))^{\frac{1}{2}}T(s)(2\rho(s))^{\frac{1}{2}}$$

n-channel thresholds: $s_1 s_2 s_3 \dots s_n$

- **Bound-state pole:** Physical Riemann Sheet, real axis, $s_P < s_1$
- Virtual-state pole:

郭志辉(河北师范大学)

Unphysical RS (adjacent to 1st RS), real axis, $s_P < s_1$

Resonance pole: Other cases

Re-derivation of Weinberg's compositeness relation

Residues of T matrix at $s = s_P$

$$\lim_{s \to s_{P}} (s - s_{P})T(s) = -\gamma\gamma^{T}, \quad \gamma^{T} = (\gamma_{1}, ..., \gamma_{n})$$
Taking derivative with
respect to s at $s = s_{P}$

$$T(s) = [\mathcal{K}(s)^{-1} + G(s)]^{-1}$$

$$\gamma\gamma^{T} = -\gamma\gamma^{T} \left[\frac{dG(s_{P})}{ds} - \mathcal{K}^{-1}\frac{d\mathcal{K}(s_{P})}{ds}\mathcal{K}^{-1}\right]\gamma\gamma^{T}$$

$$1 = -\gamma^{T}\frac{dG(s_{P})}{ds}\gamma + \gamma^{T}G(s_{P})\frac{d\mathcal{K}(s_{P})}{ds}G(s_{P})\gamma$$

$$= \sum_{i,j=1}^{n} \left(-\delta_{ij}\gamma_{i}^{2}\frac{dG(s_{P})_{i}}{ds} + \gamma_{i}G(s_{P})\frac{d\mathcal{K}(s_{P})_{ij}}{ds}G(s_{P})_{j}\gamma_{j}\right)$$

$$X$$
See also: [Hyodo et al., PRC'12] [Aceti et al., PRD'12]

郭志辉(河北师范大学)

- **Easy to demonstrate:**
- X and Z are real for bound state pole s_P
- X and Z become complex for other poles s_P, thus invalid for probabilisitc interpretation
- □ Way out of the problems

- Taking real part of X and Z (Aceti, Oset, Hyodo, ...)
- Our proposal: Rotating away the complex phases of X

Get rid of the complex phases of the compositeness X

Laurent Expansion of the S matrix around s_P

$$S(s) = \frac{\mathcal{R}}{s - s_P} + S_0(s), \quad \mathcal{R} = -2i\rho(s_P)^{\frac{1}{2}}\gamma\gamma^T\rho(s_P)^{\frac{1}{2}}.$$

Rewrite *R* explicitly symmetric: $\mathcal{R} = i\lambda \mathcal{O}\mathcal{A}\mathcal{O}^T$

Proper choice of O and λ leads to projection operator A with rank 1

$$\mathcal{A}^{\dagger}=\mathcal{A}$$
 and $\mathcal{A}^{2}=\mathcal{A}$, $\mathrm{Tr}\mathcal{A}=1$

A deeper understanding of the compositeness reltation $1 = -\gamma^{T} \frac{dG(s_{P})}{ds} \gamma + \gamma^{T} G(s_{P}) \frac{d\mathcal{K}(s_{P})}{ds} G(s_{P}) \gamma$ $\mathcal{A} = \frac{\lambda}{2} \mathcal{A} \mathcal{O}^{T} \rho(s_{P})^{-\frac{1}{2}} \left[\frac{dG(s_{P})}{ds} - G(s_{P}) \frac{d\mathcal{K}(s_{P})}{ds} G(s_{P}) \right] \rho(s_{P})^{-\frac{1}{2}} \mathcal{O} \mathcal{A}$

1 stands for the proper normalization of bound/virtual/resonance states

with rank one projection operator A

郭

Open and Hidden channels

Suppose there are *m* open channels

$$1 = \hat{\gamma}^T \left[-\frac{d\hat{G}_m(s_P)}{ds} + \hat{G}_m(s_P) \frac{d\hat{\mathcal{K}}_m(s_P)}{ds} \hat{G}_m(s_P) \right] \hat{\gamma}$$

After some manipulations, we can get a very important result

$$\hat{Z} = \hat{\gamma}^T \hat{G}_m \frac{d\hat{\mathcal{K}}_m(s_P)}{ds} \hat{G}_m \hat{\gamma} = Z + \sum_{i=m+1}^n X_i$$

Hidden-channel effects are identified as "Elementariness" !

Transformed S matrix and sum rules

$$\begin{split} \hat{S}_{u}(s) &= \hat{\mathcal{U}}_{m} \hat{S}_{m}(s) \hat{\mathcal{U}}_{m}^{T} \\ \hat{\gamma}_{u} &= \hat{\rho}(s_{P})^{-\frac{1}{2}} \hat{\mathcal{U}}_{m} \hat{\rho}(s_{P})^{\frac{1}{2}} \hat{\gamma} \\ \hat{\mathcal{U}}_{m} &= \operatorname{diag}(e^{i\phi_{1}}, \dots, e^{i\phi_{m}}) \end{split} \qquad 1 = -\hat{\gamma}_{u}^{T} \frac{d\hat{G}_{m}(s_{P})}{ds} \hat{\gamma}_{u} + \hat{\gamma}_{u}^{T} \hat{G}_{m} \frac{d\hat{\mathcal{K}}_{u}(s_{P})}{ds} \hat{G}_{m} \hat{\gamma}_{u} \end{split}$$

This procedure gives a positive real value for X

郭志辉(河北师范大学)

$$X_i^R = -e^{2i\phi_i}\eta_i^2 |\gamma_i|^2 \frac{dG(s_P)_i}{ds} = |\gamma_i|^2 \left| \frac{dG(s_P)_i}{ds} \right|$$
$$X^R = \sum_{i=1}^m X_i^R \qquad Z^R = \mathbf{1} - X^R$$

Working assumption / Condition

Summary: Once S matrix is known in a region (no matter how small) of physical real axis around M_R , we can perfrom analytic extrapolation from the real axis to the complex plane, due to the convergence of the Laurent series for s

around *M_P*. - Then, compositeness is model independently determined by the properties of resonance pole (pole position and residues)

$$X_i^R = |\gamma_i|^2 \left| \frac{dG(s_P)_i}{ds} \right|$$

Applications to some well-established hadrons

[Guo, Oller, PRD '16]

Name of the states	Pole: $\sqrt{s_P}$ [MeV]	$X^R_{\pi\pi}$	$X^R_{\bar{K}K}$	$X^R_{\eta\eta}$	$X^R_{\eta\eta'}$	X^R	Z^R
f ₀ (500) [17]	$442^{+4}_{-4} - i246^{+7}_{-5}$	$0.40^{+0.02}_{-0.02}$				$0.40\substack{+0.02\\-0.02}$	$0.60^{+0.02}_{-0.02}$
f ₀ (980) [17]	$978^{+17}_{-11} - i29^{+9}_{-11}$	$0.02\substack{+0.01\\-0.01}$	$0.65\substack{+0.27\\-0.26}$			$0.67\substack{+0.28 \\ -0.27}$	$0.33\substack{+0.28\\-0.27}$
f ₀ (1710) [14]	$1690^{+20}_{-20} - i110^{+20}_{-20}$	$0.00\substack{+0.00\\-0.00}$	$0.03\substack{+0.01 \\ -0.01}$	$0.02\substack{+0.01\\-0.01}$	$0.20\substack{+0.07 \\ -0.07}$	$0.25\substack{+0.10 \\ -0.10}$	$0.75\substack{+0.10 \\ -0.10}$
ho(770) [17]	$760^{+7}_{-5} - i71^{+4}_{-5}$	$0.08\substack{+0.01\\-0.01}$				$0.08\substack{+0.01\\-0.01}$	$0.92\substack{+0.01\\-0.01}$
		$X^R_{K\pi}$				X^R	Z^R
$K_0^*(800)$ [17]	$643^{+75}_{-30} - i303^{+25}_{-75}$	$0.94^{+0.39}_{-0.52}$				$0.94\substack{+0.39\\-0.52}$	$0.06\substack{+0.39\\-0.52}$
K*(892) [17]	$892^{+5}_{-7} - i25^{+2}_{-2}$	$0.05\substack{+0.01 \\ -0.01}$				$0.05\substack{+0.01 \\ -0.01}$	$0.95\substack{+0.01 \\ -0.01}$
		$X^R_{\pi\eta}$	$X^R_{ar{K}K}$	$X^R_{\pi\eta'}$		X^R	Z^R
<i>a</i> ₀ (1450) [17]	$1459_{-95}^{+70} - i174_{-100}^{+110}$	$0.09\substack{+0.03\\-0.07}$	$0.02\substack{+0.12 \\ -0.02}$	$0.12_{-0.09}^{+0.22}$		$0.23\substack{+0.37 \\ -0.18}$	$0.77^{+0.37}_{-0.18}$
		$X^R_{ ho\pi}$				X^R	Z^R
$a_1(1260)$ [18]	1260 - i250	0.46				0.46	0.54
Hyperon with $I = 0$		$X^R_{\pi\Sigma}$	$X^R_{\bar{K}N}$			X^R	Z^R
$\Lambda(1405)$ broad [19]	$1388_{-9}^{+9} - i114_{-25}^{+24}$	$0.73_{-0.10}^{+0.15}$				$0.73\substack{+0.15\\-0.10}$	$0.27^{+0.12}_{-0.10}$
$\Lambda(1405)$ narrow [19]	$1421^{+3}_{-2} - i19^{+8}_{-5}$	$0.18^{+0.13}_{-0.08}$	$0.82^{+0.36}_{-0.17}$			$1.00^{+0.49}_{-0.25}$	$0.00^{+0.49}_{-0.23}$
		X_{DK}^R	$X^R_{D_s\eta}$	$X^R_{D_s\eta'}$		X^R	Z^R
$D_{s0}^{*}(2317)$ [20]	2321_{-3}^{+6}	$0.56\substack{+0.05\\-0.03}$	$0.12\substack{+0.01 \\ -0.01}$	$0.02\substack{+0.01 \\ -0.01}$		$0.70\substack{+0.07\\-0.05}$	$0.30\substack{+0.07 \\ -0.05}$
		$X^R_{J/\psi f_0(500)}$	$X^R_{J/\psi f_0(980)}$	$X^{R}_{Z_{c}(3900)\pi}$	$X^R_{\omega\chi_{c0}}$	X^R	Z^R
Y(4260) [21,22]	4232.8 <i>- i</i> 36.3	0.00	0.02	0.02	0.17	0.21	0.79

郭志辉(河北师范大学)

Effective range expansion

Effective-range-expansion (ERE) formalism

$$V(k) = -\frac{1}{a} + \frac{1}{2}rk^2 \quad a: \text{ scattering length} \quad k = \sqrt{2\mu(E - M_{\text{th}})}$$
$$\mu = m_1 m_2 / (m_1 + m_2)$$
$$M_{\text{th}} = m_1 + m_2$$
$$T(k) = \frac{1}{V(k) - ik}$$

Crossed-channel cuts neglected

郭志辉(河北师范大学)

- Convergent radius of ERE: dictated by the nearest singularity from the crossed channel
- Invalid if there is a near-threshold CDD pole !

$$\delta a = -\frac{M_{\rm th} - M_{\rm i,CDD}}{g_i} \quad \delta r = -\frac{g_i}{\mu (M_{\rm th} - M_{\rm i,CDD})^2} \quad \text{[Guo, Oller, PRD '16]}$$

Single-channel case

$$t(E) = \frac{1}{-\frac{1}{a} + \frac{1}{2}rk^2 - ik} \qquad k = \sqrt{2\mu(E - M_{\text{th}})}$$

Determine *a* and *r* using the mass and width of resonance *R*

$$E_R = M_R - i \frac{\Gamma_R}{2}, \quad k_R = \sqrt{2\mu(E_R - M_{\rm th})}, \quad k_R = k_r + ik_i, \quad k_i > 0.$$

Partial wave amplitude in the 2nd Riemann Sheet :

$$t_{II}(E) = \frac{1}{-\frac{1}{a} + \frac{1}{2}rk^{2} + ik}$$
$$0 = -\frac{1}{a} + \frac{1}{2}rk^{2}_{R} + ik_{R}$$
$$a = -\frac{2k_{i}}{|k_{R}|^{2}}, \quad r = -\frac{1}{k_{i}}$$

Once *a* and *r* are determined, the partial-wave amplitude is completely fixed.

郭志辉(河北师范大学)

Residue in the variable of three-momentum k

Expand the denorminator in $k - k_R$: $t_{II}(E) = \frac{1}{-\frac{1}{a} + \frac{1}{2}rk^2 + ik}$

$$t_{II}(k) = \frac{1}{(rk_R + i)(k - k_R)} + \dots = \frac{-k_i/k_r}{k - k_R} + \dots$$

 $\gamma_k^2 = -\frac{k_i}{k_r} > 0$ (Residue also fixed by the pole position) Remember: $k_R = k_r + ik_i$, $k_i > 0$.

Residue in the variable of CM energy *E***:**

$$t_{II}(E) \xrightarrow[E \to E_R]{} - \frac{\gamma^2}{s - E_R^2} \qquad \qquad \gamma_k^2 = -\gamma^2 \frac{dk}{ds} \Big|_{k_R} = -\frac{\mu \gamma^2}{2E_R k_R}$$

郭志辉(河北师范大学)

Compositeness for a resonance within ERE

$$X = \left| \gamma^2 \frac{dG(E_R)}{ds} \right|$$
 [Kang, Guo, Oller, PRD '16]
$$= \left| \gamma^2 \frac{dk}{ds} \frac{dG(E_R)}{dk} \right|^2 = \left| \gamma_k \right|^2 = -\frac{k_i}{k_r} = \left(\frac{2r}{a} - 1 \right)^{-\frac{1}{2}}$$

After some manipulations, one can also write X explicitly in terms of M_R and Γ_R

$$X = -\frac{2(M_R - M_{\text{th}})}{\Gamma_R} + \sqrt{1 + \left[\frac{2(M_R - M_{\text{th}})}{\Gamma_R}\right]^2} \quad (\text{ The second equality is valid} \\ \text{for } (M_R - M_{th})/\Gamma_R \ll 1)$$
$$= 1 - \frac{2(M_R - M_{\text{th}})}{\Gamma_R} + 2\left[\frac{(M_R - M_{\text{th}})}{\Gamma_R}\right]^2 + \cdots$$

➤ A very rough but also very simple rule for a molecule (taking with caution !!!): $(M_R - M_{th})/\Gamma_R << 1$

郭志辉(河北师范大学)

Exotic hadrons near thresholds: ERE & Compositeness relations

郭志辉(河北师范大学)

$$t(E) = \frac{1}{-1/a + (1/2) rk^2 - ik} \qquad t_{II}(E) = \frac{1}{-1/a + (1/2) rk^2 + ik}$$
$$E_R = M_R - i\Gamma_R/2 \qquad k_R = \sqrt{\mu(E_R - m_{th})} \qquad k_r = \operatorname{Re} k_R \text{ and } k_i = \operatorname{Im} k_R.$$
$$a = -\frac{2k_i}{|k_R|^2}, \quad r = -\frac{1}{k_i}, \qquad X = |\gamma_k|^2 = -\frac{k_i}{k_r}$$

[Gao, Guo, Kang, Oller, AdvHEP '19]

Resonance	Mass	Mass Width Threshold		а	r	Х
	(MeV)	(MeV)	(MeV)	(fm)	(fm)	
<i>Z_c</i> (3900)	3886.6 ± 2.4	28.2 ± 2.6	$D\overline{D}^*$ (3875.8)	-0.94 ± 0.12	-2.40 ± 0.21	0.49 ± 0.06
X(4020)	4024.1 ± 1.9	13 ± 5	$D^*\overline{D}^*$ (4017.1)	-1.04 ± 0.26	-3.89 ± 1.42	0.39 ± 0.12
$\psi(4260)$	4230 ± 8	55 ± 19	$D_1\overline{D}$ (4289.2)	-1.04 ± 0.06	-0.54 ± 0.03	
$\psi(4660)$	4643 ± 9	72 ± 11	$\Lambda_c \overline{\Lambda}_c$ (4572.9)	-0.22 ± 0.04	-1.98 ± 0.28	0.24 ± 0.04
$\chi_{c1}(4140)$ (LHCb)	4146.5 ± 6.4	83 ± 30	$D_s\overline{D}_s^*$ (4080.5)	-0.27 ± 0.06	-1.79 ± 0.61	0.29 ± 0.08
$\chi_{c1}(4140) \ (\text{LHCb})$	4147.1 ± 2.4	15.7 ± 6.3	$D_s\overline{D}_s^*$ (4080.5)	-0.06 ± 0.02	-9.10 ± 3.86	0.06 ± 0.02
$\chi_{c1}(4140)$ (PDG)	4146.8 ± 2.4	22 ± 8	$D_s\overline{D}_s^*$ (4080.5)	-0.09 ± 0.03	-6.49 ± 2.40	0.08 ± 0.03

Single-channel scattering is assumed for each state. X is only calculated when the working condition is satisfied.

郭志辉(河北师范大学)

Scrutinizaiton of Zb(10610) and Zb(10650)

Inputs

$$M_{Z_b} = 10607.2 \pm 2.0, \qquad \Gamma_{Z_b} = 18.4 \pm 2.4,$$

 $M_{Z'_b} = 10652.2 \pm 1.5, \qquad \Gamma_{Z'_b} = 11.5 \pm 2.2.$

Outputs from ERE and compositeness relation

	$Z_b(10610)$	$Z_b(10650)$
a (fm)	-1.03 ± 0.17	-1.18 ± 0.26
<i>r</i> (fm)	-1.49 ± 0.20	-2.03 ± 0.38
$X = \gamma_k^2$	0.75 ± 0.15	0.67 ± 0.16
	$Bar{B}^*$	$B^*ar{B}^*$

Implicit assumption in the single-channel ERE: the full widths of Z_b and Z_b' are exclusively contributed by BB* and B*B*, respectively.
[Kang, Guo, Oller, PRD '16]

郭志辉(河北师范大学)

Resonance's width and its compositeness X

In our notation
$$\Gamma^{(1)} = \frac{k(M_R)|\gamma^2|}{M_R}$$

Define $g^2 = |\gamma^2 8\pi E_R| \simeq |\gamma^2| 8\pi M_R$ (for $M_R \gg \Gamma_R/2$)

Then we have the standardIformula for narrow resonanceI

$$\Gamma^{(1)} = \frac{k(M_R)g^2}{8\pi M_R^2}$$

	$Z_b(10610)$	$Z_b(10650)$
a (fm)	-1.03 ± 0.17	-1.18 ± 0.26
r (fm)	-1.49 ± 0.20	-2.03 ± 0.38
$X = \gamma_k^2$	0.75 ± 0.15	0.67 ± 0.16
g^2 (GeV ²)	362 ± 71	263 ± 63

Resonance's width and its compositeness X

Decay width expression beyond the narrow resonance formula

$$\Gamma^{(2)} = \frac{g^2}{16\pi^2} \int_{M_{\rm th}}^{+\infty} \frac{dWk(W)}{W^2} \frac{\Gamma_R}{(M_R - W)^2 + \Gamma_R^2/4}$$
$$= \frac{X|k_R|M_R^2}{\pi\mu} \int_{M_{\rm th}}^{+\infty} \frac{dWk(W)}{W^2} \frac{\Gamma_R}{(M_R - W)^2 + \Gamma_R^2/4}$$

Integration up to ∞ denoted by $\Gamma^{(2)}_{>}$, up to $M_{th} + n \Gamma_R$ by $\Gamma^{(2)}_{<}$

Γ (MeV)	$Z_b(10610)$	$Z_b(10650)$
$\Gamma^{(1)}$	14.9 ± 2.3	9.5 ± 2.1
$\Gamma^{(2)}_{>}$	21.9 ± 3.3	13.4 ± 2.8
$\Gamma_{<}^{(2)}$	18.5 ± 2.4	11.3 ± 2.1

[with n=8 ($M_{th} + n \Gamma_R$) in $\Gamma^{(2)}_{<}$ to exactly reproduce the inputs]

Resonance's width and its compositeness X

$$\Gamma^{(2)} = \frac{g^2}{16\pi^2} \int_{M_{\rm th}}^{+\infty} \frac{dWk(W)}{W^2} \frac{\Gamma_R}{(M_R - W)^2 + \Gamma_R^2/4}$$
$$= \frac{X|k_R|M_R^2}{\pi\mu} \int_{M_{\rm th}}^{+\infty} \frac{dWk(W)}{W^2} \frac{\Gamma_R}{(M_R - W)^2 + \Gamma_R^2/4}$$
$$X = \frac{\mu\pi}{|k_R|M_R^2} \int_{M_{\rm th}}^{W_+} \frac{dWk(W)/W^2}{(M_R - W)^2 + \Gamma_R^2/4} \quad (W_+ = M_{th} + 8\Gamma_R)$$

Taking branching ratios to $Br(Z_b(10610)^+) \rightarrow B\bar{B}^*) = (86.0 \pm 3.6)\%,$ redetermine the compositeness $Br(Z_b(10650)^+) \rightarrow B^*\bar{B}^*) = (73.4 \pm 3.6)\%.$

	$Z_b(10610)$	$Z_b(10650)$
$\Gamma = \Gamma_R$	$X = 0.76 \pm 0.12$	$X = 0.69 \pm 0.14$
$\Gamma = \Gamma_R \cdot \mathrm{Br}$	$X_{\rm ex} = 0.66 \pm 0.11$	$X_{\rm ex} = 0.51 \pm 0.10$

郭志辉(河北师范大学)

Application to the newly observed Pentaquark candidates

Single-channel ERE

$$E(E) = \frac{1}{-1/a + (1/2) rk^2 - ik}$$

[Guo, Oller, PLB '19]

Resonance	Mass (MeV)	Width (MeV)	Threshold (MeV)	a (fm)	r (fm)
$P_{c}(4312)$	4311.9 ± 6.8	9.8 ± 5.2	$\Sigma_c^+ \bar{D}^0$ (4317.7) $\Sigma_c^{++} D^-$ (4323.6)	$\begin{array}{c} -2.9\pm 0.8 \\ -2.4\pm 0.6 \end{array}$	$\begin{array}{c} -1.7\pm 0.7 \\ -1.2\pm 0.3 \end{array}$
$P_{c}(4440)$	4440.3 ± 4.9	20.6 ± 11.2	$\begin{array}{l} \Sigma_c^+ \bar{D}^{*0} \ (4459.8) \\ \Sigma_c^{++} D^{*-} \ (4464.2) \end{array}$	$\begin{array}{c} -1.7\pm 0.2 \\ -1.6\pm 0.2 \end{array}$	$\begin{array}{c} -0.9 \pm 0.1 \\ -0.8 \pm 0.1 \end{array}$
<i>P_c</i> (4457)	4457.3 ± 4.1	6.4 ± 6.0	$\begin{array}{c} \Sigma_c^+ \bar{D}^{*0} \ (4459.8) \\ \Sigma_c^{++} D^{*-} \ (4464.2) \end{array}$	$\begin{array}{c} -3.8 \pm 1.6 \\ -3.0 \pm 0.7 \end{array}$	$\begin{array}{c} -2.3 \pm 1.3 \\ -1.6 \pm 0.4 \end{array}$

- Natural values of a and r at the order of 1 fm indicate the moleculare natures of the three Pc states.
- Probabilistic interpretation of X=|γ|² is not valid here, since the resonance pole position does not meet the working condition !

Coupled-channel analyses using compositeness relations

Now we include the J/ ψ p, Σc D/ Σc D* to study the three Pc's.

The probabilistic interpretation of X is valid now due to the introduction of the J/ψ p channel !

 $X_{j} = |g_{j}|^{2} \left| \frac{\partial G_{j}(s_{R})}{\partial s} \right|, \qquad G(s) = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{(q^{2} - m_{1}^{2} + i\epsilon)[(P - q)^{2} - m_{2}^{2} + i\epsilon]}$ $|g_1|^2 \left| \frac{\partial G_1^{II}(s_R)}{\partial s} \right| + |g_2|^2 \left| \frac{\partial G_2(s_R)}{\partial s} \right| = X$ $J/\psi p$ $\Sigma c D / \Sigma c D^*$ $|g_1|^2 \frac{q_1(M_R^2)}{8\pi M_R^2} + |g_2|^2 \int^{M_R + 2\Gamma_R} dw \, \frac{q_2(w^2)}{16\pi^2 w^2} \frac{\Gamma_R}{(M_R - w)^2 + \Gamma_P^2/4} = \Gamma_R$ $m_{\rm th}$ $\Sigma c D / \Sigma c D^*$ J/ψ p

郭志辉(河北师范大学)

Results obtained with $X = X_1 + X_2 = 1$. The $J/\psi p$ and $\Sigma_c \bar{D}^{(*)}$ channels, which are labeled	as 1
and 2 respectively, are included.	

Resonance	g ₁ (GeV)	g ₂ (GeV)	Γ ₁ (MeV)	Γ ₂ (MeV)	<i>X</i> ₁	<i>X</i> ₂
P _c (4312)						
$m_{\Sigma_{c}^{+}} + m_{\bar{D}^{0}}$	$2.1^{+0.8}_{-2.1}$	$10.9^{+2.1}_{-2.9}$	$6.5^{+4.9}_{-6.5}$	$3.3^{+10.5}_{-3.3}$	$0.006^{+0.005}_{-0.006}$	$0.994^{+0.006}_{-0.005}$
$m_{\Sigma_c^{++}}^2 + m_{D^-}$	$2.5_{-0.9}^{+0.6}$	$12.6_{-2.6}^{+1.6}$	$8.5_{-4.6}^{+4.7}$	$1.3_{-1.3}^{+6.1}$	$0.008\substack{+0.005\\-0.005}$	$0.992\substack{+0.005\\-0.005}$
P _c (4440)						
$m_{\Sigma_{c}^{+}} + m_{\bar{D}^{*0}}$	$3.2^{+0.6}_{-0.9}$	$14.9^{+1.2}_{-1.4}$	$16.3^{+6.7}_{-7.4}$	$4.3^{+9.2}_{-4.3}$	$0.010^{+0.005}_{-0.004}$	$0.990^{+0.004}_{-0.005}$
$m_{\Sigma_c^{++}} + m_{D^{*-}}$	$3.3_{-0.9}^{+0.6}$	$15.6^{+1.0}_{-1.1}$	$17.7^{+6.9}_{-8.2}$	$2.9^{+8.3}_{-2.9}$	$0.011\substack{+0.005\\-0.005}$	$0.989^{+0.005}_{-0.005}$
P _c (4457)						
$m_{\Sigma_{c}^{+}} + m_{\bar{D}^{*0}}$	$1.5^{+0.7}_{-1.0}$	$9.5^{+2.2}_{-5.1}$	$3.5^{+4.2}_{-3.5}$	$2.9^{+9.5}_{-2.9}$	$0.002^{+0.003}_{-0.002}$	$0.998^{+0.002}_{-0.003}$
$m_{\Sigma_{c}^{++}} + m_{D^{*-}}$	$1.8_{-0.9}^{+0.6}$	$11.2^{+1.6}_{-2.5}$	$5.4_{-4.0}^{+4.2}$	$1.0^{+\overline{6.1}}_{-1.0}$	$0.003_{-0.002}^{+0.003}$	$0.997^{+0.002}_{-0.003}$

Results obtained for X = 0.8 and X = 0.5 by including the $J/\psi p$ (labeled as 1) and $\Sigma_c \bar{D}^{(*)}$ (labeled as 2) channels. The values in the table are calculated by using the masses Σ_c^+ and $\bar{D}^{(*)0}$.

Resonance	g ₁ (GeV)	g ₂ (GeV)	Γ ₁ (MeV)	Γ ₂ (MeV)	<i>X</i> ₁	<i>X</i> ₂
$P_{c}(4312)$						
X = 0.8	$2.3^{+0.7}_{-1.8}$	$9.8^{+1.8}_{-2.5}$	$7.1^{+5.0}_{-6.8}$	$2.7^{+7.3}_{-2.7}$	$0.007^{+0.005}_{-0.007}$	$0.793^{+0.007}_{-0.005}$
X = 0.5	$2.4_{-1.2}^{+0.7}$	$7.7^{+1.5}_{-2.0}$	$8.1_{-6.2}^{+5.1}$	$1.7^{+5.1}_{-1.7}$	$0.008\substack{+0.005\\-0.006}$	$0.492\substack{+0.006\\-0.005}$
$P_{c}(4440)$						
X = 0.8	$3.2^{+0.7}_{-0.9}$	$13.3^{+1.0}_{-1.3}$	$17.2^{+7.6}_{-8.2}$	$3.4^{+7.4}_{-3.4}$	$0.011^{+0.005}_{-0.005}$	$0.789^{+0.005}_{-0.005}$
X = 0.5	$3.4_{-1.0}^{+0.7}$	$10.5_{-1.0}^{+0.7}$	$18.5_{-9.3}^{+9.0}$	$2.1_{-2.1}^{+4.5}$	$0.012\substack{+0.006\\-0.006}$	$0.488\substack{+0.006\\-0.006}$
$P_{c}(4457)$						
X = 0.8	$1.6^{+0.7}_{-1.5}$	$8.5^{+2.0}_{-4.5}$	$4.1^{+4.6}_{-4.1}$	$2.3^{+7.9}_{-2.3}$	$0.002^{+0.003}_{-0.002}$	$0.798^{+0.003}_{-0.003}$
X = 0.5	$1.7_{-1.6}^{+0.8}$	$6.7^{+1.5}_{-3.3}$	$5.0^{+5.1}_{-5.0}$	$1.4^{+5.0}_{-1.4}$	$0.003_{-0.003}^{+0.003}$	$0.497\substack{+0.003\\-0.003}$

Results obtained when including the $\Lambda_c^+ \bar{D}^{*0}$ (labeled as 1) and $\Sigma_c^+ \bar{D}^{*0}$ (labeled as 2) channels for X = 1.0, 0.8 and 0.5.

	Resonance	g ₁ (GeV)	g ₂ (GeV)	Г ₁ (MeV)	Г ₂ (MeV)	<i>X</i> ₁	<i>X</i> ₂
Try to	$P_{c}(4312)$						
•	X = 1.0	$4.0^{+2.0}_{-3.8}$	$10.5^{+1.3}_{-2.5}$	$6.8^{+5.4}_{-6.8}$	$3.0^{+10.6}_{-3.0}$	$0.09^{+0.16}_{-0.09}$	$0.91^{+0.09}_{-0.16}$
include a	X = 0.8	$4.2^{+2.0}_{-3.4}$	$9.2^{+1.2}_{-2.0}$	$7.5^{+5.5}_{-7.2}$	$2.3^{+8.1}_{-2.3}$	$0.10^{+0.16}_{-0.10}$	$0.70^{+0.10}_{-0.16}$
different	X = 0.5	$4.5^{+2.0}_{-2.5}$	$6.8^{+0.9}_{-1.2}$	$8.5^{+3.7}_{-6.5}$	$1.3^{+4.5}_{-1.3}$	$0.11^{+0.17}_{-0.09}$	$0.39^{+0.05}_{-0.17}$
	$P_c(4440)$ X = 1.0	$3.8^{+0.7}_{-1.0}$	$14.8^{+1.0}_{-1.3}$	$16.4^{+6.8}_{-7.5}$	$4.2^{+9.1}_{-4.2}$	$0.03^{+0.01}_{-0.02}$	$0.97^{+0.02}_{-0.01}$
open	X = 0.8	$3.9_{-1.1}^{+0.8}$	$13.1_{-1.1}^{+0.9}$	$17.3^{+7.7}_{-8.3}$	$3.3_{-3.3}^{+7.2}$	$0.03_{-0.02}^{+0.01}$	$0.77_{-0.01}^{+0.02}$
abannal	X = 0.5	$4.0^{+1.0}_{-1.2}$	$10.2^{+0.6}_{-0.8}$	$18.6^{+9.2}_{-9.4}$	$2.0^{+4.3}_{-2.0}$	$0.03\substack{+0.02\\-0.01}$	$0.47\substack{+0.01\\-0.02}$
channel	$P_{c}(4457)$						
	X = 1.0	$1.7^{+0.9}_{-1.6}$	$9.4^{+2.3}_{-5.0}$	$3.5^{+3.7}_{-3.5}$	$2.9^{+9.5}_{-2.9}$	$0.005^{+0.007}_{-0.005}$	$0.995^{+0.005}_{-0.007}$
	X = 0.8	$1.9^{+0.8}_{-1.9}$	$8.4^{+2.0}_{-4.4}$	$4.1^{+4.6}_{-4.1}$	$2.3^{+7.9}_{-2.3}$	$0.006^{+0.008}_{-0.006}$	$0.794^{+0.006}_{-0.008}$
	X = 0.5	$2.0^{+0.9}_{-2.0}$	$6.6^{+1.6}_{-3.2}$	$5.0^{+5.1}_{-5.0}$	$1.4^{+4.9}_{-1.4}$	$0.008^{+0.008}_{-0.008}$	$0.492^{+0.008}_{-0.008}$

Variation of X

郭志辉(河北师范大学)

Summary

- We have extended Weinberg's compositeness relation for canonical resonance. And the compositeness coefficient is model independently given by the pole position and residues.
- Combination of effective range expansion and our compositeness relation provides useful tool to probe the inner structure of hadrons near thresholds.
- Successful descriptions achieved for: Zc(3900), X(4020), X(4140), Psi(4660), Zb(10610), Zb(10650), Pc(4312), Pc(4440), Pc(4457).

