## Overview on **BESII** Experiment

## 房双世 (BESIII 合作组)



#### 高能物理研究所

第十七届全国重味物理和CP破坏研讨会(HFCPV-2019) 2019年7月29日-8月1日,呼和浩特

# Outline

• History of BEPC/BES

• Physics accomplishments

• Future upgrades



## Beijing Electron Positron Collider(BEPC)

- April 1983, the State Council officially approved the proposal to construct the Beijing Electron Positron Collider (BEPC)
- October 1984, the groundbreaking ceremony for the BEPC project



## Bird view of BEPC





BEPC constructed in 1984 –1988 Beam energy: 1 – 2.8 GeV Run: Luminosity 10<sup>31</sup>cm<sup>-2</sup>s<sup>-1</sup> @ 1.89GeV

Upgrade in 1996-1998 (BES→BESII)

## **BEPCII** and **BESIII**

- BEPC (Beijing Electron-Positron Collider)
  - BESI/BESII detector worked on it from 1988 to 2004
  - Beam energy: 1.5 2.8GeV
- BEPC → BEPCII
  - Luminosity:
    - $1.0 \times 10^{31} \text{cm}^{-2} \text{s}^{-1} \rightarrow 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
  - Number of beam bunches:
    - 1→ 93
- BESIII: a new spectrometer to be working on BEPCII
  - Very good energy and angle resolution for photon measurement
  - Accurate 4-momenta measurement of charged particles with low momentum
  - Good hadron identification capabilities



### **BESIII detector**



#### CsI(Tl) calorimeter

| Sub-system     | BESIII                                                              | BESII                          |  |
|----------------|---------------------------------------------------------------------|--------------------------------|--|
|                | $\sigma_{xy}=130~\mu{ m m}$                                         | $250~\mu{\rm m}$               |  |
| MDC            | $\Delta P/P = 0.5\%$ @ 1 GeV SC magnet                              | $2.4\%$ @ 1 ${\rm GeV}$        |  |
|                | $\sigma_{dE/dx} = (6-7)\%$                                          | 8.5%                           |  |
| EM Calorimeter | $\Delta E/E = 2.5\%$ @ 1 GeV<br>$\sigma_z = 0.6 \text{ cm}$ @ 1 GeV | 20% @ 1 GeV<br>3 cm @ 1 GeV    |  |
| TOF Detector   | $\sigma_T = rac{100 	ext{ ps barrel}}{110 	ext{ ps endcap}}$       | 180 ps barrel<br>350 ps endcap |  |
| $\mu$ Counters | 9 layers                                                            | 3 layers                       |  |
| Magnet         | 1.0 Tesla                                                           | 0.4 Tesla                      |  |

### World largest data sample directly collected in the tau-charm region



# **Physics accomplishments**

- τ mass measurement
- Charm physics
- Hyperon physics
- Exotic hadrons (Light hadron +XYZ states)

## $\tau$ mass measurement

### $\tau$ mass measurement

- Lepton Universality relation  $\frac{g_{\tau}^2}{g_{\mu}^2} = \frac{m_{\mu}^5}{m_{\tau}^5} \frac{B(\tau \to e\bar{\nu_e}\nu_{\tau})}{B(\mu \to e\bar{\nu_e}\nu_{\mu})} \frac{\tau_{\mu}}{\tau_{\tau}}$
- It should be ~1 if universality holds



- **PDG1992:**  $\frac{g_{\tau}}{g_{\mu}} = 0.941 \pm 0.025$
- $\tau$  mass: DASP, SPEC, DELCO, MARK-II  $m_{\tau} = 1784. \ 1^{+2.7}_{-3.6} MeV$
- More likely τ mass come down in case of lepton universality

## $\tau$ mass: eµ +other events (BESI)





$$\frac{g_{\tau}}{g_{\mu}} = 0.9886 \pm 0.0085$$







## $\tau$ mass measurement at BESIII







#### PRL74(1995)4599



22.3 pb<sup>-1</sup> at 4.03 GeV

22.3 pb<sup>-1</sup> at 4.03 GeV

1  $D^+ \rightarrow \mu^+ v$ 



PLB429(1998)188

 $T_{D^+} = (300^{+180+80}_{-150-40}) \text{ MeV}$ 











Umiss (GeV)



2.93 fb<sup>-1</sup> data@ 3.773 GeV



#### PRD89(2014)051104R

f<sub>D+</sub>=(203.2±5.3±1.8) MeV

 $|V_{cd}| = 0.2210 \pm 0.0058 \pm 0.0047$ 

210

# BESIII's contribution to |V<sub>cs(d)</sub>|





leptonic D decay: |V<sub>es</sub>|=1.008±0.021 (PDG2016) semileptonic D decay: |V<sub>es</sub>|=0.975±0.007±0.025 (PDG2016) average of the determinations from leptonic and semileptonic: |V<sub>es</sub>|=0.995±0.016 (PDG2016) W<sup>±</sup> decays: |V<sub>es</sub>|=0.94<sup>40.02</sup><sub>4.26</sub>±0.13 (PDG2016)



After combining  $D_s^+ \rightarrow \tau^+ v |V_{cs}|$ , the weight of BESIII will be greater than 50%

# Hyperon physics

### $\Lambda$ polarization in $J/\psi \rightarrow \Lambda \overline{\Lambda}$



Transition between e+e- and  $\Lambda$   $\overline{\Lambda}$  including helicity conserving and -flip amplitudes



$$e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-) \overline{\Lambda}$$



Hyperon polarization determined using angular distribution of the baryon from weak decay

$$\mathcal{W}(\boldsymbol{\xi}; \overline{\alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}}) = 1 + \alpha_{\psi} \cos^{2}\theta_{\Lambda} + \alpha_{-}\alpha_{+} \left[ \sin^{2}\theta_{\Lambda} \left( n_{1,x}n_{2,x} - \alpha_{\psi}n_{1,y}n_{2,y} \right) + \left( \cos^{2}\theta_{\Lambda} + \alpha_{\psi} \right) n_{1,z}n_{2,z} \right] + \alpha_{-}\alpha_{+}\sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left( n_{1,x}n_{2,z} + n_{1,z}n_{2,x} \right) + \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left( \alpha_{-}n_{1,y} + \alpha_{+}n_{2,y} \right),$$

## A typical $J/\psi \rightarrow \Lambda$ $\overline{\Lambda}$ event



 $J/\psi \rightarrow \Lambda \overline{\Lambda}$ 

1.3 B J/ $\psi$  events



### First observation $\Lambda$ polarization in $J/\psi \rightarrow \Lambda$ $\Lambda$ Nature physics (2019) arXiv:1808.08917



|                           | 1 drameters               | THID WOLK                               | I ICVIOUS ICDUIDS      |
|---------------------------|---------------------------|-----------------------------------------|------------------------|
|                           | $\alpha_{\psi}$           | $0.461 \pm 0.006 \pm 0.007$             | $0.469 \pm 0.027$ [25] |
| Decay asymmetry           | $\Delta \Phi$             | $(42.4 \pm 0.6 \pm 0.5)^{\circ}$        | _                      |
|                           | $\alpha_{-}$              | $\underline{0.750 \pm 0.009 \pm 0.004}$ | $0.642 \pm 0.013$ [27] |
| $\alpha_{-} + \alpha_{+}$ | $\alpha_+$                | $-0.758 \pm 0.010 \pm 0.007$            | $-0.71 \pm 0.08$ 27    |
| $_{CP} =$                 | $\bar{\alpha}_0$          | $-0.692 \pm 0.016 \pm 0.006$            |                        |
| $\alpha_{-} - \alpha_{+}$ | $A_{CP}$                  | $-0.006 \pm 0.012 \pm 0.007$            | $0.006 \pm 0.021$ 27   |
|                           | $\bar{\alpha}_0/\alpha_+$ | $0.913 \pm 0.028 \pm 0.012$             |                        |

#### Summary

#### Extraction of the $N^*$ and $\Delta$ spectrum from experimental data:

- new information from photoproduction data
- also electroproduction
- recent results from different PW analysis groups

#### Jülich-Bonn model:

- extension of the coupled-channel approach to kaon photoproduction
- $\gamma p \rightarrow K\Sigma$  especially interesting for I = 3/2 states
- impact of a new value of the Λ decay parameter α\_:
  - many resonances more or less stable
  - some exceptions with major changes in the resonance parameters
  - photo couplings at the pole more sensitive than other parameter

#### Future plans JüBo:

- electroproduction (already in progress)
- inclusion of the further channels, e.g. photoproduction on the neutron

### D. Ronchen's talk at NSTAR2019

### D.G. Ireland's talk at NSTAR2019

#### Summary

- New BES III result for  $\alpha_{-}$  is 17% higher than PDG value
- Kaon photoproduction data can independently determine α\_
- Our result:  $\alpha_{-} = 0.721 \pm 0.006$  (stat.)  $\pm 0.005$ ( sys.)
- Other analyses will have to be reviewed!

### $\Lambda_c$ decay asymmetry parameters

arXiv:1905.04707, submitted to PRL



### Ac signals 567fb-1 @4.6 GeV





| $\Lambda_c^+ \rightarrow$     |                      | $pK_S^0$                                             | $\Lambda \pi^+$                                                                                                                                                                             | $\Sigma^{+}\pi^{0}$                                  | $\Sigma^0 \pi^+$                                     |
|-------------------------------|----------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $\alpha_{BP}^{\Lambda_c^+}$   | Predicted            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} -0.70 \ [16], \ -0.67 \ [11] \\ -0.95 \ [10], \ -0.99 \ [10] \\ -0.96 \ [17], \ -0.95 \ [18] \\ -0.99 \ [19], \ -0.86 \ [30] \\ -0.99 \ [20], \ -0.94 \ [31] \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                               | PDG [2]<br>This work | $0.18 \pm 0.43 \pm 0.14$                             | $-0.91 \pm 0.15$<br>$-0.80 \pm 0.11 \pm 0.02$                                                                                                                                               | $-0.45 \pm 0.32$<br>$-0.57 \pm 0.10 \pm 0.07$        | $-0.73 \pm 0.17 \pm 0.07$                            |
| $\Delta_1^{BP}(\mathrm{rad})$ | This work            |                                                      | $3.0 \pm 2.4 \pm 1.0$                                                                                                                                                                       | $4.1 \pm 1.1 \pm 0.6$                                | $0.8 \pm 1.2 \pm 0.2$                                |
| $\beta_{BP}$                  | This work            |                                                      | $0.06^{+0.58+0.05}_{-0.47-0.06}$                                                                                                                                                            | $-0.66^{+0.46+0.22}_{-0.25-0.02}$                    | $0.48^{+0.35+0.07}_{-0.57-0.13}$                     |
| $\gamma_{BP}$                 | This work            |                                                      | $-0.60^{+0.96+0.17}_{-0.05-0.03}$                                                                                                                                                           | $-0.48^{+0.45+0.21}_{-0.42-0.04}$                    | $0.49^{+0.35+0.07}_{-0.56-0.12}$                     |

# $\Lambda_{\rm c}$ decay before 2014



>  $\Lambda_c^+$  was observed in 1979

> All decays of  $\Lambda_c^+$  were measured with high energy data and relative to pK<sup>-</sup> $\pi^+$ , which suffers an error of 25%. No absolute measurement using threshold  $\Lambda_c^+$  data

#### > Only about 60% decays are known

| Ac DECAY MODES                                 |     | Fraction (Γ <sub>i</sub> /Γ) | Scale factor/<br>Confidence level | р<br>(MeV/c) |  |
|------------------------------------------------|-----|------------------------------|-----------------------------------|--------------|--|
| Hadronic modes with a $p: S = -1$ final states |     |                              |                                   |              |  |
| $p\overline{K}^0$                              |     | (2.3 ± 0.6)%                 |                                   | 873          |  |
| $pK^{-}\pi^{+}$                                | [a] | (5.0 ± 1.3)%                 |                                   | 823          |  |
| р <del>К</del> *(892) <sup>0</sup>             | [b] | (1.6 ± 0.5)%                 |                                   | 685          |  |
| $\Delta(1232)^{++}K^{-}$                       |     | (8.6 $\pm$ 3.0) $\times$     | 10-3                              | 710          |  |
| $\Lambda(1520)\pi^+$                           | [b] | ( 1.8 $\pm$ 0.6 ) %          |                                   | 627          |  |
| $pK^{-}\pi^{+}$ nonresonant                    |     | (2.8 $\pm$ 0.8)%             |                                   | 823          |  |
| $p\overline{K}^0\pi^0$                         |     | ( 3.3 $\pm$ 1.0 )%           |                                   | 823          |  |
| $p\overline{K}^0\eta$                          |     | ( 1.2 $\pm$ 0.4 ) %          |                                   | 568          |  |

Systematic studies of  $\Lambda_c^+$ , search for new decays, absolute BF measurements are important to explore  $\Lambda_c^+$  decay mechanisms<sup>29</sup>



## Semi-leptonic decay $\Lambda_{c}^{+} \rightarrow \Lambda l^{+}v$

#### PRL115(2015)221805



Lepton universality:

$$\frac{\Gamma[\Lambda_c^+ \to \Lambda \mu^+ v]}{\Gamma[\Lambda_c^+ \to \Lambda e^+ v]} = 0.96 \pm 0.16 \pm 0.04$$

# LQCD results : consistent with **BESIII**



### Absolute measurement of $\Lambda c \rightarrow \Lambda + anything$ PRL 121, 062003 (2018)



PDG: (33±11)%

$$\mathcal{B}(\Lambda_c^+ \to \Lambda + X) = (38.2^{+2.8}_{-2.2} \pm 0.8)\%.$$

Sum of excl. decays: ~25%, 13% of them still unknown

$$\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}$$

 $A_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.4)\%$ (No CPV is observed.)

# Larger threshold $\Lambda_c^+$ data at BESIII



#### LATEST CERN COURIER ARTICLES

Sneeze dynamics

Registration is free.

- The longest proof
- Electron-hole collider
- Imaging with muons
- Towards a nuclear clock

The charmed baryon,  $\Lambda_c$ , was first observed at Fermilab in 1976. Now, 40 years later, the Beijing Spectrometer (BESIII) experiment at the Beijing Electron-Positron Collider II (BEPCII) has measured the absolute branching fraction of

 $\Lambda^+_{c} \rightarrow pK \pi^+$  at threshold for the first time.



Beam-constrained mass distribution

to read the digital edition.

#### **KEY SUPPLIERS**





# **Exotic hadrons**



## Threshold enhancement in $J/\psi \rightarrow \gamma p p$



Baryonium ?? New decay modes ?

## **Observation of X(1835) at BESII**



X(1835) same as p p mass threshold enhancement?

PRL95, 262001 (2005)

## Confirmation of X(1835) at BESIII



| Resonance | M( MeV/c²)                      | Γ <b>( MeV/c²)</b>           | Stat.Sig.       |
|-----------|---------------------------------|------------------------------|-----------------|
| X(1835)   | 1836.5±3.0 <sup>+5.6</sup> -2.1 | 190.1±9.0 <sup>+38</sup> -36 | <b>&gt;</b> 20σ |
| X(2120)   | 2122.4±6.7 <sup>+4.7</sup> -2.7 | 83±16 <sup>+31</sup> -11     | 7.2σ            |
| X(2370)   | 2376.3±8.7 <sup>+3.2</sup> -4.3 | 83±17 <sup>+44</sup> -6      | 6.4σ            |

Observation of X(1840) in  $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ 



Mass is consistent with that of X(1835), but the width is much smaller than Γ<sub>x(1835)</sub>=190.1±9.0<sup>+38</sup>-36 MeV
 A new decay modes of X(1835)?

### Observation of X(1835) in $J/\psi \rightarrow \gamma KsKs\eta$



Phys.Rev.Lett. 115 091803(2015)

PWA for  $M(K_SK_S)$ <1.1 GeV/c<sup>2</sup>

• X(1835)  $\rightarrow K_S K_S \eta$ M=1844  $\pm 9^{+16}_{-25}$  MeV/c<sup>2</sup>  $\Gamma$ =192 $^{+20}_{-17}$   $^{+62}_{-43}$  MeV

J<sup>PC</sup>=0<sup>-+</sup>

• X(1560)  $\rightarrow$  f<sub>0</sub>(980) $\eta$ : J<sup>PC</sup>=0<sup>-+</sup> M=1565  $\pm 8^{+0}_{-63}$  MeV/c<sup>2</sup>  $\Gamma$ =45<sup>+14</sup>\_{-13} +21 MeV  $\eta$ (1405) /  $\eta$ (1475) within 2.0  $\sigma$ 

Consistent with X(1835) observed in  $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'!$ 

Latest result on X(1835) from  $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ 



existence of a structure strongly coupling to p p !

|      | 1         |                                                                                 | Observed | Confirmed |
|------|-----------|---------------------------------------------------------------------------------|----------|-----------|
| 2003 |           | X(3872)                                                                         | Belle    |           |
|      |           | X(3872)                                                                         |          | CDF, D0   |
|      |           | X(3915) [as Y(3940)]                                                            |          | Belle     |
| 2004 |           | Y(4260)                                                                         |          | BaBar     |
|      |           | χ <sub>c2</sub> (2P) [as Ζ(3930)]                                               | Belle    |           |
| 0005 |           | Y(4260)                                                                         |          | CLEO-c    |
| 2005 |           | X(3940), Y(4008), Y(4660)                                                       | Belle    |           |
|      |           | Y(4360)                                                                         | BaBar    |           |
| 2006 |           | Y(4360)                                                                         |          | Belle     |
| 2000 |           | X(3915) [as Y(3940)]                                                            |          | BaBar     |
|      |           | X(3940)                                                                         |          | Belle     |
| 2007 |           | Z <sup>+</sup> (4050), X(4160), Z <sup>+</sup> (4250),                          |          |           |
| 2007 |           | Z <sup>+</sup> (4430), X(4630)                                                  | Belle    |           |
|      |           | Y(4140)                                                                         |          | CDF       |
| 2008 |           | X(3915), X(4350), Y <sub>b</sub> (10888)                                        | Belle    |           |
|      |           | χ <sub>c2</sub> (2P) [as Ζ(3930)]                                               |          | BaBar     |
|      |           | Y(4274)                                                                         | CDF      |           |
| 2009 |           | X(3915)                                                                         |          | BaBar     |
|      |           | Z <sub>b</sub> +(10610)                                                         |          | Belle     |
| 2040 |           | $Z_{b}^{+}(10650)$                                                              |          | Belle     |
| 2010 |           | X(3823), Z <sub>b</sub> °(10610)                                                | Belle    |           |
|      |           | <u>Z</u> c <sup>+</sup> (3900), Zc <sup>+</sup> (4020)                          | BESIII   |           |
| 2011 |           | $Z_{c}^{+}(3900)$                                                               |          | Belle     |
| 2011 |           | $Z_{c}^{\circ}(3900)$                                                           |          |           |
|      |           | $\Sigma_{c}^{(4020)}$                                                           | DESIII   | DO CME    |
| 2012 |           | 1(4140)<br>Y(4274)                                                              |          | DU, CIVIS |
|      |           | T (4274)<br>Y (4660)                                                            |          | BaBar     |
|      |           | Z <sub>c</sub> <sup>+</sup> (4020)                                              | BESIII   | BaBai     |
| 2013 |           | Z <sup>+</sup> (4200)                                                           |          | Belle     |
|      |           | Z+(4240)                                                                        |          | LHCb      |
| 0044 |           | Z+(4430)                                                                        |          | LHCb      |
| 2014 |           | X(3823), Z <sub>c</sub> <sup>0</sup> (3900), Z <sub>c</sub> <sup>0</sup> (4020) |          | BESIII    |
|      |           | Z <sub>c</sub> +(4055)                                                          | Belle    |           |
| 2015 |           | Y(4230)                                                                         | BESIII   |           |
| 2013 |           | P <sub>c</sub> +(4380), P <sub>c</sub> +(4450)                                  | LHCb     |           |
|      |           | Ү <sub>ь</sub> (10880)                                                          |          | NOT Belle |
| 2016 |           | X+(5568)                                                                        | D0       |           |
|      |           | X+(5568)                                                                        |          | NOT LHCb  |
|      |           | Y(4140), Y(4274)                                                                |          | LHCb      |
| 2017 |           | X(4500), X(4700)                                                                | LHCb     |           |
|      |           |                                                                                 |          |           |
|      | PPNP 143( | 2017) Phys Rept 1(201                                                           | 6)       |           |





\$

 $\mathcal{B}$ 

BELLE



### Observation of Zc(3900) in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$





PRL110, 252001 (2013)

- M = 3899.0±3.6±4.9 MeV
- Γ = 46±10±20 MeV

Confirmed by Belle and CLEOc: established!

### **PWA** indicates J<sup>P</sup>=1<sup>+</sup>



## Zc(3900), Zc(4020)



- Observed in different processes
- Z<sub>c</sub>(3900): J<sup>P</sup> favors 1<sup>+</sup>
- Strongly coupling DD\*, D\*D\*
- Molecule states ?
- Two isospin triplets established !

PRL110, 252001 (2013) PRL115, 112003 (2015) PRL111, 242001 (2013) PRL113, 212002 (2014) PRL112, 022001 (2014) PRL115, 222002 (2015) PRL115, 182002 (2015) PRL119, 072001 (2017)

### **Evidence of Zc(3900)** $\rightarrow \rho \eta_c$







### Zc(4030) in $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$





• Properties

M-M(D<sup>0</sup> D<sup>\*0</sup>)=0.01±0.18 MeV

Γ<1.2 MeV I=0, J<sup>PC</sup>=1<sup>++</sup>

- I=0, J<sup>PC</sup>=1<sup>++</sup>
- Production

B decays, hadron collisions,

Y(4260) decays?,?





 $X(3872) \rightarrow \omega J/\psi$  and  $\pi^+\pi^- J/\psi$  47



## Observation of X(3872) $\rightarrow \omega J/\psi$

PRL122, 232002 (2019)



 $3963.7 \pm 5.5$ 

X(3960)

 $33.3 \pm 34.2$ 



-9

4.4

√s (GeV)

4

4.6



A shoulder around 4.3 GeV is observed (7.9 $\sigma$ ). A new state? Fit results: Y(4220) and Y(4360)

4.4

vs (GeV)

4

4.6



# **Upgrades on BEPCII/BESIII**

- Beam energy
  - Ebeam = 2.3→2.35 GeV in 2019
  - Ebeam = 2.35→2.45 GeV in 2020-21
- Top-up injection
  - Data taking efficiency increases by 20-30%
- Inner tracker  $\rightarrow$  CGEM inner tracker
  - Construction by Italian group
  - Will be shipped to IHEP this summer, installation in summer 2020
- Super conducting magnet
  - New valve box of SC magnet



- ~30 (10) years of BEPC(II)/BES(III)
  - 1988: First collision at BEPC/BES
  - 2008: First collision at BEPCII/BESIII
- Lots of important results were achieved
  - Mass measurement
  - R-value measurement
  - Charm physics
  - Exotic hadrons
  - .....
- Competitions from LHCb, BelleII
- Will continue to play an vital role in tau-charm physics



More important results are expected from BESIII!

